
Increasing growth, seed product and phosphorus uptake efficiency of Soybean (*Glycine max* (L.) Merrill) in Alfisol using phosphorus fertilization methods

Cahyono, O. ^{*}, Minardi, S., Hartati, S. and Rifaldi, D.

Departement of Soil Science, Faculty of Agriculture, Jl. Ir. Sutami 36A, Surakarta 57216, Central Java, Indonesia.

Cahyono, O., Minardi S., Hartati, S. and Rifaldi, D. (2022). Increasing growth, seed product and phosphorus uptake efficiency of Soybean (*Glycine max* (L.) Merrill) in Alfisol using phosphorus fertilization methods. International Journal of Agricultural Technology 18(4):1415-1428.

Abstract The result of the study showed that adding dolomite and fast soluble phosphorus (FSP) fertilizer increased growth, seed yield and P uptake efficiency on Soybean. This study recommended using FSP fertilizer at a dose of 150 kg ha^{-1} plus dolomite to increase growth and seed yield of Soybean in Alfisols. There was an increase in growth by 35.79% and seed product by 69.76% compared to the treatment of 150 kg ha^{-1} SP36 with no application of dolomite. Meanwhile, it was recommended to use 100 kg ha^{-1} FSP + dolomite due to its ability to increase the P uptake efficiency by 93.2 % compared to the treatment of 150 kg ha^{-1} SP36 without dolomite application.

Keywords: Alfisol, Efficiency, Fast soluble phosphate, Soybean

Introduction

Soybean (*Glycine max* (L.) Merrill) is one of the main food crops grown in Indonesia, alongside rice and maize. It plays a significant role in both human and animal nutritional needs. The demand for soybeans continues to increase far beyond national production. Therefore, to resolve this problem and reduce importation, its production was increased through marginal land-use intensification (Alvernia *et al.*, 2017). However, some problems limit plant yield such as, the poor efficiency of P fertilization, which on average is relatively 20% (Veneklaas *et al.*, 2012). Meanwhile, the rest that is not absorbed by plants that will be left in the soil to form insoluble compounds and having potential lost through erosion and leaching (Conijn *et al.*, 2018).

Several reasons restrict soybean yields, one of which is the lack of phosphorus (Bruno *et al.*, 2018). This is caused by dwindling fertile land due to the continuous use of chemical fertilizer. Soybean production is usually poor,

^{*} Corresponding Author: Cahyono, O.; Email: ongko_c@yahoo.com

mostly owing to insufficient fertilization and acidic soil conditions. Besides, the plant requires adequate and balanced nutrients. According to Aaina *et al.* (2018), efficient P fertilizer management provides high crop yield and sufficient nutrition supply. However, there are numerous obstacles associate with the production of soybean on marginal land, such as nutrient-poor terrestrial ecosystem, and inadequate soil organic matter (Mutammimah *et al.*, 2020).

Optimal nutrient management, including a balanced fertilization method based on soil fertility and plant needs for nutrients, has the potential to maintain production sustainability while protecting fertilizer raw materials and increasing nutrient uptake efficiency. However, in reality, fertilization is often not carried out in a balanced manner resulting in low nutrient use efficiency (Chuan *et al.*, 2016). Because P fertilizer is an expensive fertilizer and made from mineral resource that is unrenewable, it is critical to increase the P use efficiency in order to decrease farmer expenses and assist conserve limited rock phosphate supplies in the future (Pavinato *et al.*, 2017).

Previous studies have been carried out to determine the efficiency of P fertilization on various crops. For instance, studies on the efficiency of P fertilization on two soybean cultivars were carried out by Dalshad *et al.* (2013), faba bean under poor agroecosystem input (Nebiyu *et al.*, 2016), and rainfed condition (Daoui *et al.*, 2012). The use of coated P fertilizers with humic acid was studied by Volf and Rosolem (2021), which reported that the P efficiency was insignificant. Devi *et al.* (2012) studied the effect of different P fertilizer sources on soybeans and reported that the Single Super Phosphate that was applied with P solubilizing bacteria yielded better results compared to the others. Boosting the effectiveness of this manure using the foliar application method was studied by Rafiullah *et al.* (2020). It was concluded that the use of this procedure led to increased production of maize and wheat.

The efficiency of P fertilization was improved by synchronizing the time it was supplied with that of its uptake by the plants. This tends to limit the physical contact between the P ions and P fixing soil components. The longer the soil colloid fix or forms precipitated compound, the more stable the bond (Barrow, 2015). Application of fast soluble P fertilizer using the split addition methods in accordance with the plant growth phase reduces the contact time between P ion and P fixing soil component. However, there are no study on the impact of fast soluble fertilizer on soybeans. Therefore, this study is aimed to assess the effect of P application methods on the growth, product, and uptake efficiency of Soybean in Alfisols.

Materials and methods

This study was carried out on Alfisols in Jumantono, Karanganyar, from July 2020 to January 2021 at an altitude of 149 m above sea level. A randomized completely block design consisting of 5 phosphate fertilizations, 2 liming treatments and 4 blocks used as replications was adopted. The P fertilization approach comprises of $P_0 = 0 \text{ kg ha}^{-1}$ (without P fertilization), $P_1 = 150 \text{ kg ha}^{-1}$ SP36 applied at planting time (0 day after planting), $P_2 = 150 \text{ kg ha}^{-1}$ of fast soluble P fertilizer applied at 0, 15 and 30 days after planting (dap), $P_3 = 100 \text{ kg ha}^{-1}$ of fast soluble P fertilizer applied at 0, 15, 30 (dap), $P_4 = 75 \text{ kg ha}^{-1}$ of fast soluble P fertilizer applied at 0, 15 and 30 (dap). The 2 dolomite levels applied were K_0 = without dolomite and K_1 = dolomite applied to increase soil pH = 7.

The size of the tilled land was 2 m x 2 m, and as many as 40 plots were prepared. Meanwhile, before treatment, soil samples collected at 5 points were analyzed to determine some of its chemical properties, including pH (H₂O), pH (KCl), available P and P retention, organic C content, total N, exchangeable K, Ca, Mg and Fe.

Fermented cow manure was applied to all plots at a dose of 10 tonnes per hectare, at two weeks before planting. All plots were treated with Urea and Potassium chloride at doses of 175 kg ha^{-1} and 200 kg ha^{-1} respectively. In addition, both fertilizers were administered twice, 70% was applied at 10 dap while the remaining was at 30 dap. The soil was also treated with P fertilizer and soybean seeds were planted in each plot using a planting space of 20 cm x 40 cm. The plants were cultivated and maintained till they were harvested. The growth parameters include plant height, number of leaves and branches, the weight of wet and dry shoot and root, the number of pithy pods, total pods, seed weight, P uptake, P uptake efficiency, physiological and agronomic efficiencies of P were measured. The recorded data were statistically analyzed using an Analysis of Variance and Tukeys' test of 5%. The effect of the treatment on P efficiency was measured using the following formulas (Mengel and Kirkby, 2001).

$$\text{P uptake efficiency} = \frac{(\text{P uptake fertilized crops} - \text{P uptake control treatment})}{\text{P applied}} \times 100\% \dots (1)$$

$$\text{Physiological Efficiency of P} = \frac{(\text{Seed product fertilized crops} - \text{Seed product control treatment})}{(\text{P uptake fertilized crops} - \text{P uptake control treatment})} \text{ g/g} \dots (2)$$

$$\text{Agronomic Efficiency of P} = \frac{(\text{Seed product fertilized crops} - \text{Seed product control treatment})}{(\text{P applied})} \text{ g/g} \dots (3)$$

Results

The characteristics of Alfisols are shown in Table 1.

Table 1. Characteristics of the Alfisols used in this study

No	Soil characteristics	Values
1.	pH (H ₂ O)	5.50
2.	pH (KCl)	5.13
3.	C-organic (%)	1.87
4.	Total N (%)	0.16
5.	Total P (ppm)	99.41
6.	Available P (ppm)	3.12
7.	P retention (%)	87
8.	Ca (me/100 g)	1.26
9.	Mg (me/100 g)	0.87
10.	K (me/100 g)	0.24
11.	Fe (ppm)	44.71
12.	CEC (me/100 g)	38.20
13	Texture	Clay

Growth and seed product of Soybean on the application of FSP fertilizer and dolomite

The present study indicated that the P and dolomite addition significantly affected the number of leaves and branches as well as shoot dry weight. However, the treatments had an insignificant effect on plant height, root and fresh shoot weights.

The maximum number of leaves, namely 34.9, was achieved by FSP application at the rate of 150 kg ha⁻¹ FSP + dolomite (K₁P₂). Conversely, the minimum, which as many as 15.85 leaves, was found at the treatment of with no dolomite + 75 kg ha⁻¹ FSP (K₀P₄) as shown in Table 2. The maximum number of branches, 10.27 was achieved using 150 kg ha⁻¹ FSP + 0 dolomite (K₀P₂), and a minimum of 5.87 was achieved without P + no dolomite treatment (K₀P₀). The maximum weight of dry shoot obtained as 16.16 g was realized by the addition of 150 kg ha⁻¹ FSP + dolomite (K₁P₂), while a minimum weight of 6.79 g was achieved without the P + dolomite treatments (K₀P₀).

The yield components under the treatments are shown in Table 3. The result showed that the administration of P fertilizer and dolomite had a significant effect on the pithy pods number, pods weight and seeds weight. The acquired data showed that the maximum number of pithy pod, 44.17 was achieved using the treatment of 150 kg ha⁻¹ FSP + dolomite (K₁P₂). Conversely a minimum of 15.87 pithy pods was found at the treatment of without P +

without dolomite (K_0P_0). The use of FSP fertilizer increased the number of soybean pithy pods with or without dolomite application. The addition of fast soluble P fertilizer significantly improved both pods and seeds weight. The maximum weight of pods, 25.63 g, was discovered when 150 kg ha^{-1} FSP + dolomite (K_1P_2) was added to the soil, while a minimum of 8.85 g, was achieved with the treatment of 0 P + 0 dolomite (K_0P_0). A maximum seed weight of 21.61 g, was achieved by the application of 150 kg ha^{-1} FSP + dolomite (K_1P_2), while a minimum of 7.19 g, was obtained without the treatment of P + dolomite (K_0P_0).

Table 2. Number of soybean leaves, branches and shoot dry weight on the application of FSP fertilizer and dolomite

Treatment	Mean		
	Number of leaves	Number of branches	Dry weight of shoots (g)
$K_0P_0 = 0$ dolomite + 0 P	17,27 a ³	5,87 a	6,79 a
$K_0P_1 = 0$ dolomite + 150 kg/ha SP36 ¹¹	18,27 a	10,27 b	11,90 ab
$K_0P_2 = 0$ dolomite + 150 kg/ha FSP ¹²	22,25 ab	9,95 ab	10,47 ab
$K_0P_3 = 0$ dolomite + 100 kg/ha FSP ¹²	17,22 a	8,92 ab	9,09 ab
$K_0P_4 = 0$ dolomite + 75 kg/ha FSP ¹²	15,85 a	5,92 a	12,74 ab
$K_1P_0 = +$ dolomite + 0 P	19,47 a	8,32 ab	8,49 a
$K_1P_1 = +$ dolomite + 150 kg/ha SP36 ^{12*}	30,67 bc	8,90 ab	13,16 b
$K_1P_2 = +$ dolomite + 150 kg/ha FSP ¹¹	34,9 c	8,02 ab	16,16 b
$K_1P_3 = +$ dolomite + 100 kg/ha FSP ¹²	33,05 c	9,10 ab	9,30 ab
$K_1P_4 = +$ dolomite + 75 kg/ha FSP ¹²	22,45 ab	6,97 ab	9,24 ab

¹/SP6 was administered once during planting

²/FSP was applied trice at 0, 15 and 30 days after planting

³/Mean values within a column followed by the same letters are insignificantly different

at $p < 0.05$ according to Honesty Significant Difference.

Table 3. Number of soybean pithy pods and weights of pods and seeds on the application of FSP fertilizer and dolomite

Treatments	Mean		
	Number of pithy pods per plant	Pod weight per plant (g)	Seed weight/ plant (g)
$K_0P_0 = 0$ dolomite + 0 P	15,87 a ³	8,85 a	7,19 a
$K_0P_1 = 0$ dolomite + 150 kg/ha SP36 ¹¹	32,62 cd	18,95 de	12,73 c
$K_0P_2 = 0$ dolomite + 150 kg/ha FSP ¹²	35,32 cde	20,97 def	15,99 de
$K_0P_3 = 0$ dolomite + 100 kg/ha FSP ¹²	35,87 cdef	21,31 def	12,20 c
$K_0P_4 = 0$ dolomite + 75 kg/ha FSP ¹²	23,75 ab	13,56 bc	9,81 b
$K_1P_0 = +$ dolomite + 0 P	22,15 ab	10,80 ab	9,44 ab
$K_1P_1 = +$ dolomite + 150 kg/ha SP36 ¹¹	40,72 def	23,44 ef	20,59 f
$K_1P_2 = +$ dolomite + 150 kg/ha FSP ¹²	44,17 f	25,63 f	21,61 f
$K_1P_3 = +$ dolomite + 100 kg/ha FSP ¹²	42,25 ef	25,35 f	16,16 e
$K_1P_4 = +$ dolomite + 75 kg/ha FSP ¹²	28,72 bc	17,02 cd	13,61 cd

¹/SP36 was administered once during planting

²/FSP fertilizer was applied trice at 0, 15 and 30 days after planting

³/Mean values within a column followed by the same letters are insignificantly different

at $p < 0.05$ according to the Honesty Significant Difference.

Soybean P uptake and P efficiency on the application of FSP fertilizer and dolomite

P uptake and efficiency are shown in Table 4. It was discovered that the addition of P fertilizers, either SP36 or FSP, increased the soybean P uptake. The application of 150 kg ha⁻¹ FSP fertilizer without dolomite increased the P uptake from 15.87 mg plant⁻¹ to be 35.87 mg plant⁻¹. On the contrary, the treatment with dolomite increased from 22.15 to 44.17 mg plant⁻¹, as shown in Table 4.

Table 4. Soybean P uptake, and P fertilization efficiencies on the application of FSP fertilizer and dolomite

Treatments	P uptake (mg/plant)	P uptake efficiency (%)	Agronomic P efficiency (g seed/g P added)	Physiological P efficiency (g seed/g P added)
K₀P₀	15,87 a ³	-	-	-
K₀P₁¹	32,62 cd	12.2 a	29.47 a	241.60 a
K₀P₂²	35,32 cde	12.46 a	46.83 b	375.96 c
K₀P₃²	35,87 cdef	10.09 a	40.12 b	396.44 c
K₀P₄²	23,75 ab	10.32 a	27.95 a	270.87 ab
K₁P₀	22,15 ab	-	-	-
K₁P₁¹	40,72 def	16.31 ab	71.28 b	437.03 d
K₁P₂²	44,17 f	22.58 c	76.75 b	339.93 c
K₁P₃²	42,25 ef	23.57 c	71.76 b	303.76 bc
K₁P₄²	28,72 bc	19.9 bc	68.30 b	343.13 c

¹/SP36 was administered once during planting

²/FSP fertilizer was applied 3 times at 0, 15, and 30 days after planting

³/Mean values within a column followed by the same letters are insignificantly different at p < 0.05 according to Honesty Significant Difference.

This study stated that fast soluble P fertilizer treatment with dolomite significantly increased the soybean P uptake efficiency. The P uptake efficiency of the SP36 fertilizer + dolomit treatment was as high as 16.31%, and using FSP fertilizer + dolomit it was increased to 22.58%, 23.57%, and 19.90% at the FSP fertilizer treatment of 150, 100, and 75 kg ha⁻¹, respectively.

The present study stated that the addition of fast soluble P fertilizer had been discovered to improve agronomic P efficiency. Its application without dolomite increased the agronomic efficiency from 29.47 g g⁻¹ (gram of seed yield per gram of P added) to 46.83 g g⁻¹ (at the FSP dose of 150 kg ha⁻¹) and 40.12 g g⁻¹ (at the FSP dose of 100 kg ha⁻¹). Meanwhile, the use of FSP fertilizer accompanied by the application of dolomite did not increase significantly the agronomic efficiency.

The administration of fast soluble P fertilizer affected the soybean physiological efficiency of P, which was proven by the acquired data, which stated it was higher when treated with 150 and 100 kg ha⁻¹ of FSP compared to application of SP36 at the dose of 150 kg ha⁻¹. Meanwhile, the application of FSP fertilizer and dolomite reduced the physiological P efficiency (Table 4).

Discussion

Soybean growth and seed product based on FSP fertilizer and dolomite application

The addition of P fertilizer, either SP36 or FSP, increased the number of leaves, branches, and shoot dry weight. This study reported that applying P fertilizer and dolomite resulted in better growth, indicated by the increased number of leaves and shoot dry weight. However, compared to the SP36, the use of FSP improved better the growth of soybean. An increase of 91.02% was detected in the number of leaves obtained with the treatment of dolomite plus 150 kg ha⁻¹ of FSP fertilizer compared to those applied with the 150 kg ha⁻¹ of SP36 with no dolomite treatments. Similarly, the dry shoot weight increased significantly ($p < 0.05$) from 11.90 g to 16.16 g or an increase of 35.8%. However, the administration of P fertilizer without dolomite resulted in a lower dry shoot weight. This shows the important role of dolomite in cultivating acid soils. The previous study by Anis *et al.* (2020) found that dolomite treatment significantly increased soil pH, exchangeable calcium, exchangeable magnesium and reduced exchangeable aluminum. Dolomite treatment significantly increased the weight of shoot, the Ca and Mg uptake of soybean. Plant height, pod weight and seed weight of soybean under the dolomite treatment at a dose of 2.5 x Al-dd or equivalent to 39.9 tons ha⁻¹ tended to be higher than other treatments. Pod weight and seed weight tended to increase with increasing dolomite dose.

The use of dolomite in Alfisols also had a positive effect on soybean growth and yield. This is consistent with previous studies by Wijanarko and Taufiq (2016) which reported that dolomite application in Tidal land increased soybean growth and yield. This is a good ameliorant that raises soil pH and reduces Al saturation in solution (Chimdi *et al.*, 2012; Nora *et al.*, 2014; Sadiq and Babagana, 2012). Shaaban *et al.* (2015) further stated that the pH of the soil treated with dolomite tends to increase till the 17th day when it becomes relatively stable. The applied dolomite dissolves, thereby providing calcium (Ca²⁺) and magnesium (Mg²⁺) into the soil solution, which replaces aluminum (Al³⁺) and it is neutralized by OH⁻ ions.

The available P in the soil was low, 3.12 ppm; therefore, the addition of P fertilizer significantly increased plant growth. In accordance with this, the rate of photosynthesis was increased, leading to the production of excessive biomass. The results obtained proved the importance of P element in plant growth. Phosphorus plays a vital role in living cells, namely during the process of energy transfer and various other biochemical reactions (Devi *et al.*, 2012). This is consistent with previous studies, which stated that the source of element P and its level of application influenced soybean growth (Lamptey *et al.*, 2014).

The present study discovered that the addition of FSP significantly increased the soybean seed product. The administration of 150 kg ha⁻¹ FSP fertilizer led to higher pithy pods number per plant, pod weight per plant and seed weight per plant compared to SP36 application. The application of FSP both with and without dolomite resulted in higher soybean seed yields than the use of SP36 fertilizer at the same dose. Without application of dolomite, the addition of 150 kg ha⁻¹ FSP produced soybean seed weight of 15.99 g per plant, while the treatment of 150 kg ha⁻¹ SP36 without dolomite produced only 12.73 g per plant, or an increase of 25.61%. Meanwhile, with the application of dolomite, the treatment of FSP 150 kg ha⁻¹ produced seed yield as high as 21.61 g per plant, an increase of 69.76% compared to the use of SP36 fertilizer at the same dose with no dolomite application. The increase in seed weight and yield components of various crops due to the application of P fertilizer is in accordance with the results of previous studies (Amanullah and Khan, 2015; Kabir *et al.*, 2013; Kaya, 2018; Lamptey *et al.*, 2014; Rafiullah *et al.*, 2020).

The present study reported that the use of FSP tends to increase soybean growth and yield. The FSP fertilizer used in this study was the SP36 fertilizer which was reduced in size to flour size, in order to increase its solubility, because the finer the particles, the larger the surface area, and the faster its solubility in the soil solution (David Jones and David, 2016; Wu *et al.*, 2021). The method of FSP fertilizer application allowed time synchronization of P release and uptake by the plants. A previous study reported that the addition of FSP fertilizer improved the available P in Entisols (Cahyono, 2009).

Soybean P uptake and efficiency based on the treatments of P fertilizer and dolomite

The treatment of P fertilization without or with the application of dolomite, increased P uptake in soybean plants; however, the use of FSP increased P uptake higher than the use of SP36. The application of FSP without dolomite at a dose of 100 kg ha⁻¹ resulted in higher P uptake compared to the treatment of 150 kg ha⁻¹ SP36, which was 35.87 mg per plant compared to 32.62 mg per plant. Meanwhile, with dolomite application this treatment

increased P uptake from 32.62 mg per plant to 42.25 mg per plant, an increase of 29.52%. This result was in accordance with the previous research which found that P uptake by soybean treated with SP36 fertilizer at a dose of 150 kg ha^{-1} was not significant to the P uptake in treatment of 100 kg ha^{-1} FSP, 35.1 g plant^{-1} and 34.98 g plant^{-1} . The highest P uptake, 39.2 mg plant^{-1} , was achieved by the FSP fertilizer treatment at a dose of 150 kg ha^{-1} (Cahyono and Minardi, 2022).

The increased soybean P uptake was related to two reasons, method and timing of application. Firstly, the finer size of FSP fertilizer was applied to accelerate its solubility in the soil. This is because the finer the size, the faster the dissolution. It is in line with the study carried out by David Jones and David (2016) and Wu *et al.* (2021), which stated that the finer particle size of dolomite quickly dissolves in the soil. This method also limits the physical relationship between the P ions and soil reactive components. The longer the anion is absorbed into the colloidal surface or forms a precipitated compound, the more stable the bond configuration tends to occur. An increased P is expected to move from the surface to the uptake sites (Barrow, 2015).

Secondly, FSP was administered in 3 split applications at 0, 15, and 30 DAP. Provision of P according to time supports the success of plant growth. The available P content in the soil was discovered to be relatively high a few days after fertilization, although it gradually decreases as the plant grows. The rapid decline occurred 30 days after planting (Yan *et al.*, 2016). Previous studies reported that fast soluble P fertilizer on annual crops is usually effective when applied 0, 15, and 30 days after planting (Cahyono, 2009). Johnston and Bruulsema (2014) stated that for fertilization to be more efficient, therefore, there is a need to consider the right dose, type, timing, and placement of fertilizer.

The method of P fertilizer application significantly affected the P uptake, agronomic and physiological efficiencies. P uptake efficiency is described as the percentage of P fertilizer absorbed by plants and the amount added. Agronomic efficiency is the increase of crop yield due to the P added. Conversely, physiological efficiency increases crop yield due to the increased P uptake (Mengel and Kirkby, 2001).

The results of this study showed that the use of FSP fertilizer at a dose of 100 kg ha^{-1} resulted in the highest P uptake efficiency, 23.57%. This result was higher than the efficiency of P uptake in the SP36 treatment at the dose of 150 kg ha^{-1} , either with or without dolomite application. Compared to the use of SP36 without dolomite, FSP treatment of 100 kg ha^{-1} increased the P uptake efficiency by 93.2%, which increased from 12.2% to 23.57%.

The P uptake efficiency of the present study is consistent with the study carried out by Veneklaas *et al.* (2012), which stated that it is usually within 10% to 30%. Most of the unabsorbed P from fertilizers were left in the soil and formed insoluble compounds with mineral elements such as Ca, Fe, and Al, leading to poor absorption efficiency (Charana Walpola, 2012; Shen *et al.*, 2011; Shah *et al.*, 2013). This process occurs over time after P fertilizer is added to the soil (Miller *et al.*, 2011). It was estimated that P loss from conventional fertilization methods ranges from 30 to 70%, depending on the application method and soil conditions (Jin *et al.*, 2011).

The poor uptake efficiency indicates that the plant absorbs P from the added fertilizer in a small amounts. Therefore, the number of dissolved P anions in the soil and that plants absorb determines whether the uptake efficiency is high or low. According to Flatian *et al.* (2018), the effect of the P fertilization on sorghum plants reached a maximum of 5.4%, when 40 ppm of SP36 was added. Meanwhile, the contribution of P fertilizer causes an insignificant increase in the total uptake and dry weight of sorghum plants. The results of previous studies carried out by Suyono and Citraresmini (2010) stated that the P contribution from SP36 and organic fertilizers was unable to increase the dry weight of rice plants (straw and un-hulled rice) in soils with moderate phosphorus nutrient status. Fageria *et al.* (2013) discovered that P uptake efficiency in shoots and seeds of several annual crops from descending to ascending order are as follows maize, upland rice, soybeans, and beans.

The residual P fertilizer that remains in the soil is not only wasteful, however, it also leads to serious environmental problems (Azeem *et al.*, 2014; Eghbali Babadi *et al.*, 2015; Kuscu *et al.*, 2014; Rashidzadeh and Olad, 2014; Zhang *et al.*, 2011). Meng *et al.* (2019) reported that this manure leaves a Cd residue in the soil, absorbed by plants. This is derived from the phosphatic rock, while manufacturing fertilizer due to high Cd solubility and toxicity.

The application time was adjusted for 15 and 30 days after planting. The result showed that the addition of FSP fertilizer reduces P fixation in the soil, thereby synchronizing the time of release and absorption.

The study summarized that using dolomite and fast soluble P (FSP) fertilizer increased soybean growth, seed yield, and P uptake efficiency. This study recommended that to increase the growth and seed yield of Soybean in Alfisols, FSP fertilizer at a dose of 150 kg ha^{-1} plus dolomite needs to be used. This has been proven to boost growth by 35.79% and seed yield by 69.76% compared to treatment using 150 kg ha^{-1} of SP36 with no application of dolomite. Meanwhile, to improve P uptake efficiency, it was recommended that 100 kg ha^{-1} of FSP plus dolomite be applied because it has been proven to boost P uptake efficiency as high as 93.2%, which increased from 12.2% to 23.57%

compared to the treatment of 150 kg ha⁻¹ SP36 without dolomite application. To acquire a detailed result of P efficiency in soybeans, it is necessary to carry out further study involving the application of FSP on various soybean varieties.

References

Aainaa, H. N., Ahmed, O. H. and Majid, N. M. A. (2018). Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea Mays L. cultivated on an acid soil. PLoS ONE, 13:1-19.

Alvernia, P., Minardi, S. and Suntoro, S. (2017). Zeolite and Organic Fertilizer Application to The Improvement of Available P and Soybean (*Glycine max* L) Seed Yield in Alfisols. Sains Tanah - Journal of Soil Science and Agroclimatology, 14:84.

Amanullah. and Khan, A. (2015). Phosphorus and compost management influence maize (*Zea mays*) productivity under semiarid conditions with and without phosphate solubilizing bacteria. Frontiers in Plant Science, 6:1-8.

Anis, N., Budi, N. and Tri, I. L. (2020). Pengaruh Dolomit terhadap Pertumbuhan dan Serapan Ca dan Mg Kedelai (*Glycine max* (L) Merr) pada Podsolik Jasinga. Undergraduate Theses, Faculty of Agriculture, IPB Bogor. Retried from <http://repository.ipb.ac.id/handle/123456789/102531>

Azeem, B., Kushaari, K., Man, Z. B., Basit, A. and Thanh, T. H. (2014). Review on materials & methods to produce controlled-release coated urea fertilizer. Journal of Controlled Release, Elsevier, 181:11-21.

Barrow, N. J. (2015). Soil phosphate chemistry and the P-sparing effect of previous phosphate applications. Plant and Soil, 397:401-409.

Bruno, I., Silva, A., Franzini, V., Marcante, N. and Muraoka, T. (2018). Phosphorus Efficiency in Brazilian Soybean Cultivars. Journal of Experimental Agriculture International, 25:1-14.

Cahyono, O. (2009). Formation of Occluded-P Compound from Unabsorbed Phosphate Fertilizer in Paddy Soil. Agrivita, 31:243-248.

Cahyono, O. and Minardi, S. (2022). Effect of Fast Dissolved Phosphorus Fertilizer on the Growth, Seed Product, and Phosphorus Uptake Efficiency of Soybean (*Glycine max* L.). Agrivita – Journal of Agricultural Science, 44:21-30.

Charana Walpol, B. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Study, 6:6600-6605.

Chimdi, A., Gebrekidan, H., Kibret, K. and Tadesse, A. (2012). Effects of Liming on Acidity-Related Chemical Properties of Soils of Different Land Use Systems in Western Oromia, Ethiopia. World Journal of Agricultural Sciences, 8:560-567.

Chuan, L., He, P., Zhao, T., Zheng, H. and Xu, X. (2016). Agronomic characteristics related to grain yield and nutrient use efficiency for wheat production in China. PLoS ONE, 11:1-16.

Conijn, J. G., Bindraban, P. S., Schröder, J. J. and Jongschaap, R. E. E. (2018). Can our global

food system meet food demand within planetary boundaries? *Agriculture, Ecosystems and Environment*, 251:244-256.

Dalshad, A. D., Pakhshan, M. M. and Shireen, A. A. (2013). Effect of phosphorus fertilizers on growth and physiological phosphorus use efficiency of three soybean cultivars. *Journal of Veterinary and Agricultural Science*, 3:32.

Daoui, K., Karrou, M., Mrabet, R., Fatemi, Z., Draye, X. and Ledent, J. F. (2012). Genotypic variation of phosphorus use efficiency among Moroccan faba bean varieties (*Vicia faba major*) under rainfed conditions. *Journal of Plant Nutrition*, 35:34-48.

David Jones, J. and David, J. (2016). Influence of source and particle size of agricultural limestone on efficiency at increasing soil pH Recommended Citation. Retried from <https://lib.dr.iastate.edu/etd/15330>

Devi, K. N., Singh, L. N. K., Devi, T. S., Devi, H. N., Singh, T. B., Singh, K. K. and Singh, W. M. (2012). Response of Soybean [*Glycine max* (L.) Merrill] to sources and levels of phosphorus. *Journal of Agricultural Science*, 4:44.

Eghbali Babadi, F., Yunus, R., Abdul Rashid, S., Mohd Salleh, M. A. and Ali, S. (2015). New coating formulation for the slow release of urea using a mixture of gypsum and dolomitic limestone. *Particuology*, 23:62-67.

Fageria, N. K., Moreira, A. and dos Santos, A. B. (2013). Phosphorus Uptake and Use Efficiency in Field Crops. *Journal of Plant Nutrition*, 36:2013-2022.

Flatian, A. N., Slamet, S. and Citraresmini, A. (2018). Peruntutan Serapan Fosfor (P) Tanaman Sorgum Berasal dari 2 Jenis Pupuk yang Berbeda Menggunakan Teknik Isotop (32P). *Jurnal Ilmiah Aplikasi Isotop Dan Radiasi*, 14:110-115.

Jin, S., Yue, G., Feng, L., Han, Y., Yu, X. and Zhang, Z. (2011). Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent. *Journal of Agricultural and Food Chemistry*, 59:322-327.

Johnston, A. M. and Bruulsema, T. W. (2014). 4R nutrient stewardship for improved nutrient use efficiency. *Procedia Engineering*, 83:365-370.

Kabir, R., Yeasmin, S., Mominul Islam, A. K. M. and Rahman Sarkar, M. A. (2013). Effect of phosphorus, calcium and boron on the growth and yield of groundnut (*Arachis hypogaea* L.). *International Journal of Bio-Science and Bio-Technology*, 5:51-60.

Kaya, E. (2018). Pengaruh Pupuk Kalium Dan Fosfat Terhadap Ketersediaan Dan Serapan Fosfat Tanaman Kacang Tanah (*Arachis Hypogaea* L.) Pada Tanah Brunizem. *Agrologia*, 1:113-118.

Kuscu, H., Turhan, A., Ozmen, N., Aydinol, P. and Demir, A. O. (2014). Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (*Lycopersicon esculentum* Mill.). *Horticulture Environment and Biotechnology*, 55:103-114.

Lamptey, S., Ahiabor, B. D. K., Yeboah, S. and Asamoah, C. (2014). Response of Soybean (*Glycine max*) to rhizobial inoculation and phosphorus application. *Journal of Experimental Biology and Agricultural Sciences*, 2:72-77.

Meng, D., Li, J., Liu, T., Liu, Y., Yan, M., Hu, J., Li, X., Liu, X., Liang, Y., Liu, H. and Yin, H. (2019). Effects of redox potential on soil cadmium solubility: Insight into microbial

community. *Journal of Environmental Sciences (China)*, 75:224-232.

Mengel, K. and Kirkby, E. A. (2001). *Principles of plant nutrition.*, 5th edn (Kluwer Academic Publishers: Dordrecht, The Netherlands).

Miller, J. J., Chanasyk, D. S., Curtis, T. W. and Olson, B. M. (2011). Phosphorus and Nitrogen in Runoff after Phosphorus- or Nitrogen-based Manure Applications. *Journal of Environmental Quality*, 40:949-958.

Mutammimah, U., Minardi, S. and Suntoro. (2020). Organic amendments effect on the soil chemical properties of marginal land and soybean yield. *Journal of Degraded and Mining Lands Management*, 7:2263-2268.

Nebiyu, A., Diels, J. and Boeckx, P. (2016). Phosphorus use efficiency of improved faba bean (*Vicia faba*) varieties in low-input agroecosystems. *Journal of Plant Nutrition and Soil Science*, 179:347-354.

Nora, D. D., Jorge, T., Amado, C., Bortolotto, R. P., Ferreira, O., Reichardt, K. and Santi, A. L. (2014). Subsoil chemical amelioration and crop yields under continuous long-term no-till in a subtropical Oxisol. *African Journal of Agricultural Study*, 9:3338-3349.

Pavinato, P. S., Rodrigues, M., Soltangheisi, A., Sartor, L. R. and Withers, P. J. A. (2017). Effects of cover crops and phosphorus sources on maize yield, phosphorus uptake, and phosphorus use efficiency. *Agronomy Journal*, 109:1039-1047.

Rafiullah, Jamal Khan, M., Muhammad, D., Fahad, S., Adnan, M., Wahid, F., Alamri, S., Khan, F., Muhammad Dawar, K., Irshad, I., Danish, S., Arif, M., Amanullah, Saud, S., Khan, B., Ahmad Mian, I., Datta, R., Zarei, T., Ali Shah, A., ... Siddiqui, M. H. (2020). Phosphorus nutrient management through synchronization of application methods and rates in wheat and maize crops. *Plants*, 9:1-20.

Rashidzadeh, A. and Olad, A. (2014). Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. *Carbohydrate Polymers*, 114:269-278.

Sadiq, A. A. and Babagana, U. (2012). Influence of Lime Materials To Ameliorate Acidity on Irrigated Paddy Fields: a Review. *Academic Study International*, 3:1-8.

Shaaban, M., Peng, Q. an, Hu, R., Wu, Y., Lin, S. and Zhao, J. (2015). Dolomite application to acidic soils: a promising option for mitigating N₂O emissions. *Environmental Science and Pollution Study*, 22:19961-19970.

Shah, M. A., Manaf, A., Hussain, M., Farooq, S. and Zafar-ul-Hye, M. (2013). Sulphur fertilization improves the sesame productivity and economic returns under rainfed conditions. *International Journal of Agriculture and Biology*, 15:1301-1306.

Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W. and Zhang, F. (2011). Phosphorus dynamics: From soil to plant. *Plant Physiology*, 156:997-1005.

Suyono, A. D. and Citraresmini, A. (2010). Measurement of P contribution from several P sources by using ³²P method. *Atom Indonesia*, 36:69-75.

Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C. E., Plaxton, W. C., Price, C. A., Scheible, W.-R., Shane, M. W., White, P. J. and others. (2012). Opportunities for improving phosphorus-use efficiency in crop plants. *New Phytologist*, 195:306-320.

Volf, M. R. and Rosolem, C. A. (2021). Soil P Diffusion and Availability Modified by Controlled-Release P Fertilizers. *Journal of Soil Science and Plant Nutrition*, 21:162-172.

Wijanarko, A. and Taufiq, A. (2016). Effect of lime application on soil properties and soybean yield on tidal land. *Agrivita*, 38:14-23.

Wu, H., Hu, J., Shaaban, M., Xu, P., Zhao, J. and Hu, R. (2021). The effect of dolomite amendment on soil organic carbon mineralization is determined by the dolomite size. *Ecological Processes*, 10:<https://doi.org/10.1186/s13717-020-00278-x>

Yan, C., Zhan, H., Yan, S., Dong, S., Ma, C., Song, Q., Gong, Z. and Barbie, M. (2016). Effects of straw retention and phosphorous fertilizer application on available phosphorus content in the soil solution during rice growth. Springer.

Zhang, T. Q., Liu, K., Tan, C. S., Warner, J. and Wang, Y. T. (2011). Processing Tomato Nitrogen Utilization and Soil Residual Nitrogen as Influenced by Nitrogen and Phosphorus Additions with Drip-Fertigation. *Soil Science Society of America Journal*, 75:738-745.

(Received: 30 October 2021, accepted: 10 April 2022)