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Abstract The real-time detection of parthenium weed plants in the pulse crop field was carried 

out using low altitude flying drone. A fully convolutional semantic segmentation model was 

proved to accurately perform object segmentation with higher time complexity. In this research, 

the LinkNet model with Resnet-34 was used for real-time detection of weed plants using a 

video feed from low altitude flying drones. Experimental results is proven that LinkNet-34 can 

detect overlapping and irregular shape weed objects at 0.86 mean pixel accuracy of 0.598 mean 

IoU at 0.217s. The processing speed was better compared to LinkNet and U-Net models. The 

detected weed images were stitched together to create a weed site map. The created map is 

automatically uploaded to google cloud for further site analysis. 

 

Keywords: Deep learning, LinkNet, ResNet, Site map, U-Net, Unmanned aerial vehicle, 

Weeds 

 

Introduction 

 

 Pulses are one of the major food crops feeding over 80% of the Indian 

population (Annual Report, 2017-18), eradicating malnutrition and providing a 

good amount of protein and better economic profit for the farmers. However, 

the yield of pulses, year after year, is going down due to the weeds in farmlands 

impeding the growth of pulse crops. Weeds in the farmlands have decreased 

pulse production by competing for light, nutrients, moisture in the pulse-field 

(Tshewang et al., 2016). In traditional farming, de-weeding is done by spraying 

pesticide/herbicides without distinguishing pulse crops with weeds. This 

methodology not only results in a waste of pesticide/herbicides, but it also 

causes environmental and health hazards for humans (Wiles, 2009). Smart site-

specific weed management that reduces pesticide consumption by 50% and 

environmental pollution which increases crop yield resulting in economic 

                                                           
*

Corresponding Author: Revanasiddappa, B.; Email: sidduaitcse@gmail.com, 

revanasiddappa@dr-ait.org.                            



1228 

 

 

 

profits (Jensen et al., 2012). To obtain these benefits, automatic identification 

of weeds and their positions is necessary for site-specific spraying. 

 The automatic spraying of pesticides requires the generation of a weed 

cover map. However, in past, the researchers have used binary segmentation 

methods with projection transformation to calculate the weed area (Tellaeche et 

al., 2011). With the advancement of an unmanned aerial vehicle to protect 

plants, weed detection is done by capturing data from different height using the 

drone and projection transformation is performed for weed detection in maize 

and sunflower fields (Pe ŕez-Ortiz et al., 2016; Lo ṕez-Granados et al., 2016; 

Borra-Serrano et al., 2015). However, it remains difficult to obtain accurate 

information on the weed area by flying the drone at that height. To overcome 

this drawback, low-altitude flying nano drones with a camera fitted can be used 

to get accurate information on weed areas on a small scale and to distinguish 

weed and crop. 

 Deep learning, a branch of machine learning is being widely applied in 

various areas of research and has become a powerful method for image 

classification (Krizhevsky et al., 2012; Szegedy et al., 2014) and object 

detection (Erhan et al., 2013). Typically, object detection like fast-rcnn 

(Girshick et al., 2014), faster-rcnn (Burlina et al., 2016), and YOLO (Redmon 

et al., 2016) perform well when the object bounding boxes tightly surrounds the 

region of interest. In this research, weeds or pulse plants do not have definite 

boundaries and might overlay with each other. Morphological diversity of weed 

growth will cause challenges for using object detection with a tight bounding 

box.  

 The main aim of semantic segmentation was to obtain the class results of 

each pixel at the corresponding position. The patch-level method which uses 

features of image patches to train the classifiers (Wei et al., 2015) is time-

consuming and the performance of an algorithm is affected by the limited 

number of patches. To overcome this drawback a pixel-wise fully convolutional 

network (FCN) was developed which was able to obtain the position of every 

pixel and features of points are taken to train the classifiers (Shelhamer et al., 

2017).  FCN takes an RGB or single-channel image of any size as input and 

retains spatial information such that it can classify each pixel on the feature 

map. This helps in generating field maps of a weed location.  

 Deep learning is being widely used in many applications of agriculture.  

Semantic segmentation algorithm like FCN has been used for weed detection 

from images captured from UAV for different crops like rice, soybean, 

sunflower (Huang et al., 2018). The demonstrated techniques use offline image 

data processing to generate a weed map of the captured data.  

LinkNet-34, which was proposed by (Zhou et al., 2018) is a deep fully 

convolutional neural network for segmentation that uses ResNet-34 as 
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backbone architecture which is pre-trained on ImageNet (Krizhevsky et al., 

2017) as its encoder. ResNet34 is designed to work for mid-resolution images 

of size 256x256 and does accurate fast semantic segmentation which can detect 

irregular shape objects like weeds accurately because of its symmetric encoder 

and decoder structure level features. 

 In this paper, a robust real-time fast semantic segmentation with 

automatic weed map generation of detected weeds using nano drone with high- 

resolution camera can fly at low altitude and transmit real image feed to the 

ground system to do real-time processing of the captured data is proposed. 

 The main objectives of this study were to propose a semantic 

segmentation pipeline which can work in real-time to detect weeds from the 

drone video feed and create a weed map that can be uploaded to the cloud, and 

to compare the performance of semantic segmentation models, namely U-Net, 

LinkNet and LinkNet-34 for real-time weed detection. 

 

Materials and methods  

 

The perception system encompasses the steps is shown in Figure 1. The 

pipeline for weed detection included four different stages. (i) The capture of 

weed plant data was used an unmanned aerial vehicle UAV. (ii) Data were 

prepared by manual annotation. (iii) The weed plant detection model was 

trainined by hyperparameter tuning. (iv) Weed localization (v) and  weed map 

creation were uploaded to the cloud. The detector was run on the prepared 

images to generate the candidate weed regions. The generated candidate region 

of Interest (ROIs) from the second step was localized the weed regions which  

fed into weed map creation, and the generated weed map is uploaded to the 

cloud for further analysis. 
 

 

Figure 1.The perception of weed detection system 



1230 

 

 

 

Data acquisition 

 

 Raw Parthenium hysterophorus is, a native American tropics weed 

(Manpreet et al., 2014) which infects farmland and pastures often causing 

disastrous loss of yield as reflected in common name of famine weed. This 

weed in contact with human can cause dermatitis and respiratory malfunction 

(Munesh et al., 2010). Thus, early detection of parthenium in the pulse field is 

necessary. 

The weed images in the pulse field was captured using Tello drone which 

has 5-megapixel camera of [1280x720] resolution image with low altitude 

stable flight (Figure 2).  Data were captured on September 21, 2019, which was 

approximately 35 days from the sowing of the horse gram pulse. The horse 

gram pulse field is located in mysuru, India (12
0
.23

’
 N,76

0
.64

’
 E). The drone 

had manual flight, so that it can be flown at low altitude with stop and go 

method to capture the weed. Around 9.82 minutes of flight data were captured 

which resulted in 294 frames at 30 frames per second. 

 

 
 

Figure 2. Weed images in pulse-field 

 

Data preparation 

 

 The acquired image is of 1280x720 resolution which is large in size that 

might overload the GPU memory. Therefore, each image is resized to 512x512 

resolution and ground truth (GT) is manually annotated using an open-source 

labeling tool called labelme (Arvind et al., 2019). In this experiment, two 

categories are considered as weed and background which included healthy 

crops and soil as shown in Figure 3. The annotated ninety percent of samples 
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were randomly selected in which eighty percent is considered for training, 10% 

for validation, and the remaining 10% for testing dataset. Validation of the 

training model is directly tested from the drone itself. 

The horse gram pulse crop field data were captured with parthenium 

weeds from low altitude flight drones. Figure 4 shows The input image of horse 

gram pulse-field captured from low altitude drone, the white region showing 

manually annotated weed plant and weed plant region outline is shown in 

yellow color showing the plant is of irregular shape and size with overlapping 

features that are labeled as a, b and c respectively (Figure 4). 

 

 
 

Figure 3. Horse gram Pulse crop field data 

 

 
 

Figure 4. Input image of Horse gram pulse-field 
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Drone communication 
 

 Nano Tello drone is connected to a local system running the ubuntu 

operating system using wireless communication. The communication to a drone 

is via Tello API. The binding of drone uses local IP address with local video 

port. The video streaming uses a h264 video encoder (Richardson et al., 2003) 

with a sender and receiver video socket. The video streaming is done at 30 

frames per second using multithreading concepts (Cetinkaya et al., 2019). 

Flight control during data acquisition is via manual flight but testing is fully 

autonomous using Tello API commands. Command communication uses the 

multithreading principle. The coverage range of wireless communication is up 

to 100 meters in radius and 50 feet in altitude using a WiFi extender. Figure 5 

shows the secured video streaming and command communication between 

drones to a local system using wireless communication. 

 

 

Figure 5. Secured video streaming and command communication 
 

Weed detection training architecture 
 

In the weed detection problem, the original size of the image captured and 

the annotated masks are 1280x720. For algorithmic standard the image captured 

and the mask is resized to 512x512. The image contains two classes of an 

object mainly (i) pulse crop (ii) weed. Captured weed and crops are overlaying 

with the same color but with different leaf shapes. Considering these features, 

semantic segmentation algorithm like U-net, LinkNet, and, LinkNet-34 is 

designed to process 512x512 image resolution as input, so that it can preserve 

image features.  

The U-Net semantic segmentation model was developed by Ronneberger 

(Ronneberger et al., 2015) that performed well on biomedical image data. U-

Net model contains encoder and decoder structure, where encoder would shrink 

the data, and decoder expanding the features which are encoded. The lost 

information during encoding is copied during decoding, so that lost edge 

information is replenished. This model can accurately predict the edge pixel 

values, which is very important in correctly segmenting the overlay weed plant 

region. The U-Net model which is used in this research work is shown in Table 

1. It showed the parameters used for the training U-Net model.  
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Table 1. Typical U-Net architecture with 5 encoder and 5 decoder layers for 

weed detection 

 
 

Table 2. LinkNet deep learning model  
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LinkNet is light weighted semantic segmentation architecture which is 

lighting fast as stated by author Abhishek (Abhishek and Eugenio, 2017). With 

11.5 million parameters, the network has a series of encoder and decoder blocks 

which downsample up to image and up-sample it with few convolutional layers. 

The structure of the network used in this research work is shown in Table 2 

with a few parameters. Real-time segmentation is achieved to require for real-

time weed plant detection through live video fed from the drone camera. 

LinkNet model parameter tuning does not improve model performance. 

The accuracy without compromising on time complexity was improved. 

LinkNet is integrated with ResNet-34 (He et al., 2015) a pre-trained model such 

that encoded features of ResNet help to improve the decoder image features. 

The LinkNet-34 network structure is shown in Table 3 that is improved the 

segmentation accuracy by removing false positive like soil and also perform 

real-time segmentation of weed plant from a live video feed from the drone 

camera. Different training hyperparameters for training U-Net, LinkNet, and 

LinkNet-34 are mentioned in Table 4. 

The training loss as represented in the red line getting reduced after each 

epoch is shown in Figure 6. The red line of the LinkNet-34 loss value is 

reduced after each training epoch indicating that the algorithm can detect the 

region of interest. 

  

Table 3. Proposed LinkNet 34 deep learning model architecture for weed plant 

detection 
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Table 4. U-net, LinkNet and LinkNet-34 training parameters for weed 

detection 

 
 

 
Figure 6. Training loss 

 

Dice co-efficient is shown in equation 1 to determine the accuracy of 

foreground pixels.  

Dice Coefficient = 2*TP/ (TP+FP+TP+FN)      (1) 

 

Where TP is the number of True predicted weed pixels, FP is the number of 

False predicted weed pixels, FN is the number of false predicted plant regions 

as weed pixels.    

The increase in dice co-efficient with an increase in training epoch 

showing that the network can be predicted foreground weed pixels by 

penalizing wrong labels better (Figure 7). 
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Figure 7. Dice coefficient score 

 

Inference weed detection 

 

Real-time weed detection is achieved with an autonomous flight. The 

drone which transmits [1280x720] resolution image is taken as input data for 

the trained model as it can handle variable size input data. During inference, the 

following steps are followed as per algorithm 1 for real-time weed plant 

segmentation.     

Secure Communication(): Drone and local system are paired together to 

a wireless hotspot for secured wireless communication. 

Command(): Autonomous flight of Tello Drone is achieved using Tello 

drone API commands which helps to control the drone from a local system. The 

command is sent according to fly a mission. 

Image Data Transfer(): Tello drone uses UDP protocol for sending of 

captured images to the local system via wireless.  

Weed Segmentation(): Trained semantic segmentation model like U-Net, 

LinkNet, and, LinkNet-34 is used for segmentation. 

Algorithm 1: Real-Time Weed Plant Segmentation: Input is RGB Image 

I(x, y) from Tello Drone camera and output is Weed Plant segmentation region. if 

Secure Communication(), while True, if Image Data Transfer(), Command = 

Take off, Command = Up 6 feet, Command = Move Forward/Backward, Weed 

Segmentation() = I(x, y), Weed Plant Segmentation ROI = I(x, y) Weed 

Segmentation, end if, end while and end if. 

 

Field map generation  

 

 For further analysis, after each mission getting a complete picture of site-

specific weed region inside of the pulse grain field is necessary. To generate a 
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complete picture after each flight weed detected region, images are stitched 

together to generate a panoramic view using image stitching methodology. 

Panoramic weed map is generated using scale-invariant features of the detected 

image using SIFT (Lindeberg, 2012) algorithm and RANSAC (Schnabel et al., 

2007) is used to remove outlier. Homography is computed to match feature 

points and warp perspective image generating which provides site-specific 

weed region (Agarwal et al., 2005).  The flight generated weed field maps is 

used SIFT and homographic transformation algorithm, where the multiple weed 

detected images are stitched to generate the site-specific weed map (Figure 8). 

 

 
Figure 8. Generated Weed Plant field map 

 

Field map upload to cloud   

 

The Google Drive API allows the uploading of a weed map file when it is 

created or updated (Dinatha et al., 2016). The upload of weed map uses HTTPS 

file upload steps as shown in algorithm 2. 

Algorithm 2. Weed Map Cloud Upload: Input is RGB M(x, y) generated 

weed map and output is uploaded message of Generated M(x, y) to cloud. A 

POST request to the upload URL is created. Query parameter uploadType is 

multi-part, M(x,y) Weed Map is added to the request body.  HTTP Head with 

Content-Type set to MIME is added.  Then, the request for Map Upload to 

specific URL is send and successfully uploaded message. 

 

Results 

 

Weed region segmentation  
 

Mean Intersection over Union (MIoU) is used to measure the accuracy 

which determined the union of ground truth region with predicted weed region. 
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In addition to MIoU measure, the speed of the deep learning algorithm is also 

measured as it is key for real-time weed detection using drone feed. MIoU is 

calculated as per equation 2. The weed detection system is developed in python 

using open-source deep learning Tensorflow 1.12 (Abadi et al., 2016) and 

OpenCV 4.1 (Gollapudi, 2019) library under Ubuntu 18.04 operating system 

with 32 GB RAM and NVIDIA 1060 6GB GPU. 

 

  (2) 

Result showed K which represents weed region and crop with soil as 

background and k in equation 2 was set to 2. In this experiment, i represents 

ground truth class; j represents the predicted class; Pii represents the number of 

true positive, which represent a number of pixels of ground truth class and 

predicted class as same; Pij represents the number of false positives, the 

misclassified number of pixels and Pji represents the number of false negatives, 

namely the number of pixels that were falsely classified. Weed detection 

accuracy at different MIoU threshold levels for three different algorithms with 

time complexity is shown in Table 45. The pixel classification in terms of the 

F1 score is evaluated. The Proposed LinkNet-34 is outperformed when 

compared to the existing U-Net and LinkNet model. The F1 score accuracy rate 

for weed and background pixel-wise classification for three models was 0. 943, 

0.897, and 0.836, respectively. 

 

Table 5. Evaluation of pixel classification using f1Score 

 
 

The experimental results of weed detection in the pulse grain field using 

three different semantic segmentation models is shown in Table 6. The 

performance metrics such as mean pixel (MP) and mean intersection of union 
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(MIoU) is used for the estimation of correct pixel prediction. The proposed 

LinkNet-34 method is outperformed the regular U-Net and LinkNet model with 

an average accuracy value of 86.7% with a runtime accuracy of 0.217 seconds. 

The LinkNet-34 is shown a more shortcut connection with Resnet as a 

backbone model to predict the weed plant pixels accurately compared to U-Net 

and LinkNet model. 

 

Table 6. Experimental results of weed detection in pulse grain field using three 

different semantic segmentation models 

 
The parthenium weed segmentation result of three different models where 

Input image, ground truth, U-Net segmentation resulted in false-positive of 

detecting soil as weed region (Figure 9). LinkNet resulted better than U-Net and 

LinkNet-34 with accurately segmented weed region better than LinkNet result 

is indicated as a, b, c, d, and e regions.  
 

 
Figure 9. Parthenium weed segmentation 

 

Discussion 

 

 The results of the present study revealed that early detection of 

parthenium weed plants in the pulse crop field can be detected using low 
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altitude flying drone in real-time. According to previous research work on weed 

detection during the seedling stage in paddy fields using a fully convolutional 

network was stated by Ma, et al. (2019) using high-resolution image data. In 

our study, a real-time weed map is created for site is based weed management 

using deep learning-based semantic segmentation algorithm output. A 

comparative study was conducted between U-Net, LinkNet, and, LinkNet-34 

deep learning models for real-time weed segmentation. In which experimental 

results showed that LinkNet-34 model can segment parthenium weed plants, 

which were overlapping, and in-between pulse crop with high accuracy in real-

time as shown Table 6. Huang et al. (2018) created weed mapping using 

unmanned aerial vehicle imagery using FCN deep learning architecture with an 

accuracy of 93.4%, not in real-time as FCN was very slow compared to 

LinkNet. The proposed automatic weed map generation was the time efficient 

and is conducted after each flight by stitching weed plant detected images using 

feature-based homography method as shown in Figure 8. The generated weed 

map is uploaded to a cloud drive for end-user field analysis as explained in 

algorithm 2. Even though, the proposed weed, plant segmentation pipeline was 

working in real-time using deep learning from low altitude drone video data. It 

failed to cover the complete field as the flight was only 13 minutes for the 

experimental drone and feature-based image stitching fails to create a good 

weed map, if there were 10 frames difference from continuous frame sequences. 

To overcome flight time issues of Tello drone either multiple flights needed to 

be flown or used an advanced version of low altitude drone-like Marvic Mini 

which is better flight time and stable video capture. Feature-based stitching can 

be replaced with learning-based image registration method which can generate 

better weed map for analysis. 
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