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Abstract The real-time detection of parthenium weed plants in the pulse crop field was carried
out using low altitude flying drone. A fully convolutional semantic segmentation model was
proved to accurately perform object segmentation with higher time complexity. In this research,
the LinkNet model with Resnet-34 was used for real-time detection of weed plants using a
video feed from low altitude flying drones. Experimental results is proven that LinkNet-34 can
detect overlapping and irregular shape weed objects at 0.86 mean pixel accuracy of 0.598 mean
loU at 0.217s. The processing speed was better compared to LinkNet and U-Net models. The
detected weed images were stitched together to create a weed site map. The created map is
automatically uploaded to google cloud for further site analysis.

Keywords: Deep learning, LinkNet, ResNet, Site map, U-Net, Unmanned aerial vehicle,
Weeds

Introduction

Pulses are one of the major food crops feeding over 80% of the Indian
population (Annual Report, 2017-18), eradicating malnutrition and providing a
good amount of protein and better economic profit for the farmers. However,
the yield of pulses, year after year, is going down due to the weeds in farmlands
impeding the growth of pulse crops. Weeds in the farmlands have decreased
pulse production by competing for light, nutrients, moisture in the pulse-field
(Tshewang et al., 2016). In traditional farming, de-weeding is done by spraying
pesticide/herbicides without distinguishing pulse crops with weeds. This
methodology not only results in a waste of pesticide/herbicides, but it also
causes environmental and health hazards for humans (Wiles, 2009). Smart site-
specific weed management that reduces pesticide consumption by 50% and
environmental pollution which increases crop yield resulting in economic
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profits (Jensen et al., 2012). To obtain these benefits, automatic identification
of weeds and their positions is necessary for site-specific spraying.

The automatic spraying of pesticides requires the generation of a weed
cover map. However, in past, the researchers have used binary segmentation
methods with projection transformation to calculate the weed area (Tellaeche et
al., 2011). With the advancement of an unmanned aerial vehicle to protect
plants, weed detection is done by capturing data from different height using the
drone and projection transformation is performed for weed detection in maize
and sunflower fields (Perez-Ortiz et al., 2016; Lo pez-Granados et al., 2016;
Borra-Serrano et al., 2015). However, it remains difficult to obtain accurate
information on the weed area by flying the drone at that height. To overcome
this drawback, low-altitude flying nano drones with a camera fitted can be used
to get accurate information on weed areas on a small scale and to distinguish
weed and crop.

Deep learning, a branch of machine learning is being widely applied in
various areas of research and has become a powerful method for image
classification (Krizhevsky et al., 2012; Szegedy et al., 2014) and object
detection (Erhan et al., 2013). Typically, object detection like fast-rcnn
(Girshick et al., 2014), faster-rcnn (Burlina et al., 2016), and YOLO (Redmon
et al., 2016) perform well when the object bounding boxes tightly surrounds the
region of interest. In this research, weeds or pulse plants do not have definite
boundaries and might overlay with each other. Morphological diversity of weed
growth will cause challenges for using object detection with a tight bounding
box.

The main aim of semantic segmentation was to obtain the class results of
each pixel at the corresponding position. The patch-level method which uses
features of image patches to train the classifiers (Wei et al., 2015) is time-
consuming and the performance of an algorithm is affected by the limited
number of patches. To overcome this drawback a pixel-wise fully convolutional
network (FCN) was developed which was able to obtain the position of every
pixel and features of points are taken to train the classifiers (Shelhamer et al.,
2017). FCN takes an RGB or single-channel image of any size as input and
retains spatial information such that it can classify each pixel on the feature
map. This helps in generating field maps of a weed location.

Deep learning is being widely used in many applications of agriculture.
Semantic segmentation algorithm like FCN has been used for weed detection
from images captured from UAV for different crops like rice, soybean,
sunflower (Huang et al., 2018). The demonstrated techniques use offline image
data processing to generate a weed map of the captured data.

LinkNet-34, which was proposed by (Zhou et al., 2018) is a deep fully
convolutional neural network for segmentation that uses ResNet-34 as
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backbone architecture which is pre-trained on ImageNet (Krizhevsky et al.,
2017) as its encoder. ResNet34 is designed to work for mid-resolution images
of size 256x256 and does accurate fast semantic segmentation which can detect
irregular shape objects like weeds accurately because of its symmetric encoder
and decoder structure level features.

In this paper, a robust real-time fast semantic segmentation with
automatic weed map generation of detected weeds using nano drone with high-
resolution camera can fly at low altitude and transmit real image feed to the
ground system to do real-time processing of the captured data is proposed.

The main objectives of this study were to propose a semantic
segmentation pipeline which can work in real-time to detect weeds from the
drone video feed and create a weed map that can be uploaded to the cloud, and
to compare the performance of semantic segmentation models, namely U-Net,
LinkNet and LinkNet-34 for real-time weed detection.

Materials and methods

The perception system encompasses the steps is shown in Figure 1. The
pipeline for weed detection included four different stages. (i) The capture of
weed plant data was used an unmanned aerial vehicle UAV. (ii) Data were
prepared by manual annotation. (iii) The weed plant detection model was
trainined by hyperparameter tuning. (iv) Weed localization (v) and weed map
creation were uploaded to the cloud. The detector was run on the prepared
images to generate the candidate weed regions. The generated candidate region
of Interest (ROIs) from the second step was localized the weed regions which
fed into weed map creation, and the generated weed map is uploaded to the
cloud for further analysis.

Input Image Semantic Segmentation Segmentation Mask
\‘ LinkNet
"‘[ U-Net o
( LinkNet-34
Cloud Storage
e D e e

Figure 1.The perception of weed detection system
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Data acquisition

Raw Parthenium hysterophorus is, a native American tropics weed
(Manpreet et al., 2014) which infects farmland and pastures often causing
disastrous loss of yield as reflected in common name of famine weed. This
weed in contact with human can cause dermatitis and respiratory malfunction
(Munesh et al., 2010). Thus, early detection of parthenium in the pulse field is
necessary.

The weed images in the pulse field was captured using Tello drone which
has 5-megapixel camera of [1280x720] resolution image with low altitude
stable flight (Figure 2). Data were captured on September 21, 2019, which was
approximately 35 days from the sowing of the horse gram pulse. The horse
gram pulse field is located in mysuru, India (12°.23" N,76°.64 E). The drone
had manual flight, so that it can be flown at low altitude with stop and go
method to capture the weed. Around 9.82 minutes of flight data were captured
which resulted in 294 frames at 30 frames per second.

Data Caprured
Area

Figure 2. Weed images in pulse-field

Data preparation

The acquired image is of 1280x720 resolution which is large in size that
might overload the GPU memory. Therefore, each image is resized to 512x512
resolution and ground truth (GT) is manually annotated using an open-source
labeling tool called labelme (Arvind et al., 2019). In this experiment, two
categories are considered as weed and background which included healthy
crops and soil as shown in Figure 3. The annotated ninety percent of samples
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were randomly selected in which eighty percent is considered for training, 10%
for validation, and the remaining 10% for testing dataset. Validation of the
training model is directly tested from the drone itself.

The horse gram pulse crop field data were captured with parthenium
weeds from low altitude flight drones. Figure 4 shows The input image of horse
gram pulse-field captured from low altitude drone, the white region showing
manually annotated weed plant and weed plant region outline is shown in
yellow color showing the plant is of irregular shape and size with overlapping
features that are labeled as a, b and c respectively (Figure 4).

- Background D Weed Region Weed Region Outline

Figure 4. Input image of Horse gram pulse-field
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Drone communication

Nano Tello drone is connected to a local system running the ubuntu
operating system using wireless communication. The communication to a drone
is via Tello API. The binding of drone uses local IP address with local video
port. The video streaming uses a h264 video encoder (Richardson et al., 2003)
with a sender and receiver video socket. The video streaming is done at 30
frames per second using multithreading concepts (Cetinkaya et al., 2019).
Flight control during data acquisition is via manual flight but testing is fully
autonomous using Tello APl commands. Command communication uses the
multithreading principle. The coverage range of wireless communication is up
to 100 meters in radius and 50 feet in altitude using a WiFi extender. Figure 5
shows the secured video streaming and command communication between
drones to a local system using wireless communication.

Secure Wireless
(Communication
Figure 5. Secured video streaming and command communication

Weed detection training architecture

In the weed detection problem, the original size of the image captured and
the annotated masks are 1280x720. For algorithmic standard the image captured
and the mask is resized to 512x512. The image contains two classes of an
object mainly (i) pulse crop (ii) weed. Captured weed and crops are overlaying
with the same color but with different leaf shapes. Considering these features,
semantic segmentation algorithm like U-net, LinkNet, and, LinkNet-34 is
designed to process 512x512 image resolution as input, so that it can preserve
image features.

The U-Net semantic segmentation model was developed by Ronneberger
(Ronneberger et al., 2015) that performed well on biomedical image data. U-
Net model contains encoder and decoder structure, where encoder would shrink
the data, and decoder expanding the features which are encoded. The lost
information during encoding is copied during decoding, so that lost edge
information is replenished. This model can accurately predict the edge pixel
values, which is very important in correctly segmenting the overlay weed plant
region. The U-Net model which is used in this research work is shown in Table
1. It showed the parameters used for the training U-Net model.
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Table 1. Typical U-Net architecture with 5 encoder and 5 decoder layers for

weed detection

Eocoder Layer type Foature Number Decoder Layer Feature Number
Size of Type Size of
Featuren Features
k1l Coavl | RN 16 D5 Upsanple 2 128
Concat [DSE4)
Coovl 2 RIS 16 Comt_1 1xd 124
Max Feol 22 L] Comt 2 13 124
| #] Coov2 ) RIS n Da UpSample 1x2 (2}
Conv2 2 M n Coucat ID4,E4)
Comy7 1 RI%] (]
Max Pool 2 16 Comv? 2 [ 7]
| 8] Convd 1 A 6od D1 UpSample ) n
Coovd 2 ) o4 Coneat [D3.E2)
Comd 1 i n
Max Paol IS n Com$ 2 e 2
(¥ Couvd ) M 128 D2 UpSample ) 16
Convd 2 m 128 Concat (D2.E1)
Comy® 1 m 16
Max Fool (2 n Comvd 2 w 16
s Coave_1 3 256 ot Convld_1 1a1 Sigmoid
Table 2. LinkNet deep learning model
Encoder Block Feature Decodor Block Feature
Decodec 256,512)
encl Eocoder decd Block
Block (45 Shortcet [enc) decd)]
Decoder (128.256)
wocl Focoder dec) Block
Wock wLun Shortow [enc2 decd]
Decoder 164.128)
woc) Focoder dec? Wleck
encd Decoder (64.64)
Focoder decl Meck
Mlack 25%.51Y) Shorteut {dec jmpar]
Facoder Decoder Shortcat
Block Block
con|(3s3){nn)]
conr{(3x3)(nm)] Comvi(lxl)imdn)] convill)
coav((3ad)ima)] Mus/d mid), " 2) 12 regularizer
convi(3ad) fmm), 2] Comvi(lxl)mm'd)]
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LinkNet is light weighted semantic segmentation architecture which is
lighting fast as stated by author Abhishek (Abhishek and Eugenio, 2017). With
11.5 million parameters, the network has a series of encoder and decoder blocks
which downsample up to image and up-sample it with few convolutional layers.
The structure of the network used in this research work is shown in Table 2
with a few parameters. Real-time segmentation is achieved to require for real-
time weed plant detection through live video fed from the drone camera.

LinkNet model parameter tuning does not improve model performance.
The accuracy without compromising on time complexity was improved.
LinkNet is integrated with ResNet-34 (He et al., 2015) a pre-trained model such
that encoded features of ResNet help to improve the decoder image features.
The LinkNet-34 network structure is shown in Table 3 that is improved the
segmentation accuracy by removing false positive like soil and also perform
real-time segmentation of weed plant from a live video feed from the drone
camera. Different training hyperparameters for training U-Net, LinkNet, and
LinkNet-34 are mentioned in Table 4.

The training loss as represented in the red line getting reduced after each
epoch is shown in Figure 6. The red line of the LinkNet-34 loss value is
reduced after each training epoch indicating that the algorithm can detect the
region of interest.

Table 3. Proposed LinkNet 34 deep learning model architecture for weed plant
detection

Encoder Laver Type Decoder Decoder Laver Twpe
Enc1 (7x7.64) Decl Decoder Block 256
Enc 2 (3x3.64) Dec2 Decoder Block 128
Enc 3 (3x3,128) Dec 3 Decoder Block o4
Enc 4 (3x3256) Dec 4 Decoder Block 64
Eac S (3x3.512) Dec 4 Transpose Comy 3x3°2

Resnet-34
Decoder Block Decs Conv 5 _1 3x3
*conv Ixl Comv 92 S
» Batch Norm
* Transpose conv
» Batch Norm
* Comv Ix1
» Batch Norm
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Table 4. U-net, LinkNet and LinkNet-34 training parameters for weed
detection
Training U-Net LinkNet LinkNet-34
Parameters
Training Images 297 297 297
Number of Weed 1467 1467 1467
ROI
PreTrained Model [No No ResNet-34
Image Dimensions |[512x512] [512x512] [512x512]
Learning 0.9 0.9 0.9
Momentum
Learning Rate le-5 le-6 le-6
Number of Classes |2 2 2
Number of Epochs {40 350 450
Steps per Epoch 100 100 100

|

*“~1*L‘~“zi*thhLuy

: T PRy ntod J‘.‘M " "g,,-kv';w‘u,.u‘k L0 S

Figure 6. Training loss

Dice co-efficient is shown in equation 1 to determine the accuracy of

foreground pixels.
Dice Coefficient = 2*TP/ (TP+FP+TP+FN)

1)

Where TP is the number of True predicted weed pixels, FP is the number of
False predicted weed pixels, FN is the number of false predicted plant regions

as weed pixels.

The increase in dice co-efficient with an increase in training epoch
showing that the network can be predicted foreground weed pixels by
penalizing wrong labels better (Figure 7).
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Figure 7. Dice coefficient score

Inference weed detection

Real-time weed detection is achieved with an autonomous flight. The
drone which transmits [1280x720] resolution image is taken as input data for
the trained model as it can handle variable size input data. During inference, the
following steps are followed as per algorithm 1 for real-time weed plant
segmentation.

Secure Communication(): Drone and local system are paired together to
a wireless hotspot for secured wireless communication.

Command(): Autonomous flight of Tello Drone is achieved using Tello
drone APl commands which helps to control the drone from a local system. The
command is sent according to fly a mission.

Image Data Transfer(): Tello drone uses UDP protocol for sending of
captured images to the local system via wireless.

Weed Segmentation(): Trained semantic segmentation model like U-Net,
LinkNet, and, LinkNet-34 is used for segmentation.

Algorithm 1: Real-Time Weed Plant Segmentation: Input is RGB Image
lx, y) from Tello Drone camera and output is Weed Plant segmentation region. if
Secure Communication(), while True, if Image Data Transfer(), Command =
Take off, Command = Up 6 feet, Command = Move Forward/Backward, Weed
Segmentation() = Il y). Weed Plant Segmentation ROl = Iy yy Weed
Segmentation, end if, end while and end if.

Field map generation

For further analysis, after each mission getting a complete picture of site-
specific weed region inside of the pulse grain field is necessary. To generate a
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complete picture after each flight weed detected region, images are stitched
together to generate a panoramic view using image stitching methodology.
Panoramic weed map is generated using scale-invariant features of the detected
image using SIFT (Lindeberg, 2012) algorithm and RANSAC (Schnabel et al.,
2007) is used to remove outlier. Homography is computed to match feature
points and warp perspective image generating which provides site-specific
weed region (Agarwal et al., 2005). The flight generated weed field maps is
used SIFT and homographic transformation algorithm, where the multiple weed
detected images are stitched to generate the site-specific weed map (Figure 8).

Figure 8. Generated Weed Plant field map

Field map upload to cloud

The Google Drive API allows the uploading of a weed map file when it is
created or updated (Dinatha et al., 2016). The upload of weed map uses HTTPS
file upload steps as shown in algorithm 2.

Algorithm 2. Weed Map Cloud Upload: Input is RGB M, y) generated
weed map and output is uploaded message of Generated M, yy to cloud. A
POST request to the upload URL is created. Query parameter uploadType is
multi-part, M,y Weed Map is added to the request body. HTTP Head with
Content-Type set to MIME is added. Then, the request for Map Upload to
specific URL is send and successfully uploaded message.

Results

Weed region segmentation

Mean Intersection over Union (MloU) is used to measure the accuracy
which determined the union of ground truth region with predicted weed region.
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In addition to MloU measure, the speed of the deep learning algorithm is also
measured as it is key for real-time weed detection using drone feed. MloU is
calculated as per equation 2. The weed detection system is developed in python
using open-source deep learning Tensorflow 1.12 (Abadi et al., 2016) and
OpenCV 4.1 (Gollapudi, 2019) library under Ubuntu 18.04 operating system
with 32 GB RAM and NVIDIA 1060 6GB GPU.

1 wx Py
MIoU = —¥% (@)
I I

Result showed K which represents weed region and crop with soil as
background and k in equation 2 was set to 2. In this experiment, i represents
ground truth class; j represents the predicted class; Pii represents the number of
true positive, which represent a number of pixels of ground truth class and
predicted class as same; Pij represents the number of false positives, the
misclassified number of pixels and Pji represents the number of false negatives,
namely the number of pixels that were falsely classified. Weed detection
accuracy at different MloU threshold levels for three different algorithms with
time complexity is shown in Table 45. The pixel classification in terms of the
F1 score is evaluated. The Proposed LinkNet-34 is outperformed when
compared to the existing U-Net and LinkNet model. The F1 score accuracy rate
for weed and background pixel-wise classification for three models was 0. 943,
0.897, and 0.836, respectively.

Table 5. Evaluation of pixel classification using f1Score

'l Score
Appronch Type of Pixel Weead PBackCiround
(Parthenium)
LI-Net Weed 0.8367 016434
(Parthenium)
Pulse Ciranin with 0, 1084 0.8916
Soil as
Backaround
LinkNet Weed 0.8973 00,1027
(Parthenium)
Pulse Grain with 00368 0.9632
Soil as
Background
LinkNet-34 Weed 0.943 0,087
(Partheniwm)
Pulse Cirain with 00287 0.9743
Soil as
Background

The experimental results of weed detection in the pulse grain field using
three different semantic segmentation models is shown in Table 6. The
performance metrics such as mean pixel (MP) and mean intersection of union
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(MloU) is used for the estimation of correct pixel prediction. The proposed
LinkNet-34 method is outperformed the regular U-Net and LinkNet model with
an average accuracy value of 86.7% with a runtime accuracy of 0.217 seconds.
The LinkNet-34 is shown a more shortcut connection with Resnet as a
backbone model to predict the weed plant pixels accurately compared to U-Net
and LinkNet model.

Table 6. Experimental results of weed detection in pulse grain field using three
different semantic segmentation models

Approach | Training | Nomber | Validation | Mean Pixel | Mean IoU | Testing | Mean Pixel | Mean
Images of Weed Images Accoracy of of Data Acenracy IoUof | Speed
Samples Validation Validation of Testing | Testing
Data Data Data Data
U-Het 0.712 0.34% 0704 0327 | 0312
LinkNet 257 1467 30 0.824 0373 967 0812 0.5 0178z
LinkMat-34 0.867 0.598 0.543 0581 | 02172

The parthenium weed segmentation result of three different models where
Input image, ground truth, U-Net segmentation resulted in false-positive of
detecting soil as weed region (Figure 9). LinkNet resulted better than U-Net and
LinkNet-34 with accurately segmented weed region better than LinkNet result
is indicated as a, b, c, d, and e regions.

[ Weed Ansatated Region BB Segmested Region  U.Net LinkNet LinkNet 34

Figure 9. Parthenium weed segmentation

Discussion

The results of the present study revealed that early detection of
parthenium weed plants in the pulse crop field can be detected using low
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altitude flying drone in real-time. According to previous research work on weed
detection during the seedling stage in paddy fields using a fully convolutional
network was stated by Ma, et al. (2019) using high-resolution image data. In
our study, a real-time weed map is created for site is based weed management
using deep learning-based semantic segmentation algorithm output. A
comparative study was conducted between U-Net, LinkNet, and, LinkNet-34
deep learning models for real-time weed segmentation. In which experimental
results showed that LinkNet-34 model can segment parthenium weed plants,
which were overlapping, and in-between pulse crop with high accuracy in real-
time as shown Table 6. Huang et al. (2018) created weed mapping using
unmanned aerial vehicle imagery using FCN deep learning architecture with an
accuracy of 93.4%, not in real-time as FCN was very slow compared to
LinkNet. The proposed automatic weed map generation was the time efficient
and is conducted after each flight by stitching weed plant detected images using
feature-based homography method as shown in Figure 8. The generated weed
map is uploaded to a cloud drive for end-user field analysis as explained in
algorithm 2. Even though, the proposed weed, plant segmentation pipeline was
working in real-time using deep learning from low altitude drone video data. It
failed to cover the complete field as the flight was only 13 minutes for the
experimental drone and feature-based image stitching fails to create a good
weed map, if there were 10 frames difference from continuous frame sequences.
To overcome flight time issues of Tello drone either multiple flights needed to
be flown or used an advanced version of low altitude drone-like Marvic Mini
which is better flight time and stable video capture. Feature-based stitching can
be replaced with learning-based image registration method which can generate
better weed map for analysis.
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