Monitoring of *Puccinia triticina* Erikss. physiologic races and effectiveness of *Lr*-genes in Egyptian wheat during 2014-2016 growing seasons

Khadegah Najeeb, M. A.², Thabet, M.^{1*}, Negm, S. S.² and El-Deeb, S. H.¹

¹Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt; ²Department of Wheat Diseases, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt.

Khadegah Najeeb, M. A., Thabet, M., Negm, S. S. and El-Deeb, S. H. (2019). Monitoring of *Puccinia triticina* Erikss. physiologic races and effectiveness of *Lr*-genes in Egyptian wheat during 2014-2016 growing seasons. International Journal of Agricultural Technology 15(1): 35-54.

Abstract Infected wheat leaves with leaf rust fungus, (*Puccinia triticina*), were obtained from Egyptian wheat rust trap nursery (EWRTN) located at Kafr El-Sheikh, Sharqia and Beni-Suef Governorates during 2014-15 and 2015-16 growing seasons. Leaves were used to identify virulence phenotypes prevalent in the selected Governorates. Virulence was tested with 16 lines of Thatcher wheat that differed for single leaf rust resistance (Lr) genes. The single pustule method was applied for isolation of each sample. A total of 37 and 90 virulence phenotypes were respectively described in the three Governorates during 2014-15 and 2015-16 growing seasons. The two most common virulence phenotypes across three areas were BBBB and BBBT that were high frequencies throughout the tow growing seasons. While, the other races were rare, which they represented by only one or two isolates in the tested pathogen populations. Frequency of race groups based on infection types (IT s) of the first 8 differential host lines were also detected. The most common race group was DK-- (13.51%) which virulent to Lr 2c, 16, 24 and 26, followed by race group TT-- (10.81%) which virulent to all 8 Lr genes in 2014-15. On the other hand, race group BB-- (23.33%) was avirulent to all 8 Lr genes in 2015-16. Virulence frequency was very high against Lr 1, 2c, 10, 11, 16, 17, 21, 24 and 26. In contrast, virulence occurred at relatively low frequency against Lr 2a, 2b, 3, 3ka, 9, 18 and 30. Thus, these genes considered to be the most effective resistance genes against a large number of the pathogen isolates which were detected in the two successive growing seasons 2014-2015 and 2015-2016.

Keywords: Wheat, *Puccinia triticina*, race-specific resistance, virulence, monogenic lines (*Lr* genes), cluster analysis

Introduction

Leaf rust (caused by *Puccinia triticina*) is one of the most important fungal disease of wheat in Egypt (Nazim *et al.*, 1983). It is annually occurring

^{*} Corresponding Author: Thabet, M.; Email: marianshokry@agr.asu.edu.eg

on the most commercial wheat cultivars. The widespread occurrence of leaf rust pathogen mainly attributes to, its broad climatic adaptation to the wide range of diverse environmental conditions. The nature of urediniospores enables them to migrate by air for thousands of kilometers, which causes the spread of new virulent pathotypes throughout the world (Burdon and Silk, 1997; Kolmer, 2005). Generally, leaf rust is a polycyclic fungal pathogen with a capability to produce new virulent phenotypes (races), faster than the release of new wheat varieties (McDonald and Linde, 2002; Kolmer, 2013). Thus, wheat varieties cannot extend their field resistance life (Khan, 1987).

In Egypt, leaf rust is more regular and more dominant compared to the other rust diseases. The source of primary inoculum is exogenous yearly coming from neighbor countries as airborne, because the urediniospores cannot over-summering due the high temperature and the absence of alternate hosts in Egypt (McVey *et al.*, 2004; Nazim *et al.*, 2010). The exogenous inoculums have different virulence and aggressiveness; it usually causes the disposal of recent cultivars after a very short time of their releases. Moreover, losses in grain yield, up to 10% and can reach to nearly 50% depending on the growth stage of wheat plants when the initial infection occurs, and the relative resistance or susceptibility of the host cultivar (Ordonez *et al.*, 2010; Ola. Mabrouk, 2012; Thabet and Khadegah Najeeb, 2017).

Identification of virulent phenotypes in wheat rust populations is critical for development of resistant cultivars. Many of the designated Lr genes originally from common wheat and various wild relatives of wheat. Physiological specialization of the fungus must be determining annually because of the dynamic state of *Puccinia triticina* that makes the life span of any variety is very short. Virulence surveys of the wheat leaf rust fungus have been conducted by Wheat Diseases Research Division, since 1954 to detect new virulence phenotypes and to monitor shifts of virulence phenotypes in the major wheat growing regions of Egypt (Hassan *et al.*, 2012). Using resistant genotypes are the most economic and effective method to control plant diseases in general and particularly obligate parasite including leaf rust of wheat (Elyasi-Gomari and Lesovaya, 2009; Ahmad *et al.*, 2010).

The objectives of this study were to characterize the virulence of P. triticina populations in Egypt and their geographical distribution in three Governorates, in addition to determine the relative effectiveness of wheat leaf rust resistance (Lr) genes to serve the national breeding program for wheat rust resistance

Materials and Methods

Leaf Rust Trap Nurseries included (Lr genes) entries (monogenic lines carrying different Lr genes) were planted in different agro-climatic zones at locations where leaf rust disease is known to occur naturally each year (Table, 1). The main objectives of Egyptian Rust Trap Nursery were (1): to determine disease incidence with different agro-climatic zones. (2): to identify prevalent leaf rust pathotypes in wheat grown areas and (3): to assess the effectiveness of known resistance genes. Rust differential cultivars were evaluated for the specific rust (leaf rust). For monitoring of wheat leaf rust virulence/a virulence pattern, each entry was planted as a single row. Each row with 1 m long and 30 cm apart was about 3 gm of seed, with one employed row between entries.

Table 1. Wheat monogenic lines (*Lr* genes) used in this study

N0.*	Lr genes	Accession number ¹	Pedigree ²
1	Lr1	GSTR 402	Thatcher*6/Centenario
2	Lr2a	GSTR 403	Thatcher*6/Webster
3	Lr2c	GSTR 405	Thatcher*6/Brevit
4	Lr3	GSTR 406	Thatcher*6/Democrat
5	Lr9	GSTR 409	Thatcher*6/Aegilops umbellulata
6	<i>Lr16</i>	GSTR 417	Thatcher*6/Exchange
7	<i>Lr24</i>	GSTR 425	Thatcher*6/Agropyron elongatum
8	<i>Lr26</i>	GSTR 427	Thatcher*6/Imperial (rye)
9	Lr3ka	GSTR 408	Thatcher*6/Klein Aniversario
10	<i>Lr11</i>	GSTR 411	Thatcher*6/Hussar
11	<i>Lr17</i>	GSTR 418	Thatcher*6/Klein Lucero
12	<i>Lr30</i>	GSTR 430	Thatcher*6/Terenzio
13	<i>Lr10</i>	GSTR 410	Thatcher*6/Lee
14	<i>Lr18</i>	GSTR 419	Thatcher*6/Africa 43
15	Lr21	GSTR 422	Thatcher*6/Aegilops tauschii
16	Lr2b	GSTR 404	Thatcher*6/Agent

^{1.} Accession numbers in accordance with Research Service of Germplasm Resource Information Network (GRIN).

Virulence frequency of P. triticina population

Samples of wheat leaves bearing the uredinia of leaf rust, were collected from the experimental plots of rust trap nurseries, throughout 3 Governorates in Egypt, during 2014-15 and 2015-16 growing seasons. Each sample (2-4 infected leaves) was kept overnight at room temperature (18-25°c), to be dried off. The samples were then kept in glycine envelops and stored in

^{2.} Pedigree in accordance with Genetic Resources Information System for Wheat and Triticale (GRIS).

the refrigerator at $2-5^{\circ}$ c. Uridiniospores maintained their viability under these conditions for using up to 180 days (Stakman *et al.*, 1962).

Isolation and Purification

The urediospores of each dried sample (infected leaf) were isolated by transferring the inoculum to the seedling's leaves of the highly susceptible wheat variety (Morocco), using the spatula method. The inoculated plants were placed overnight in humid chamber (100% RH and 18-20°c) to allow the rust spores to germinate and cause infection. The plants were then moved to the greenhouse benches where daily temperature variety between 20-25°c (Kolmer and Ordoñez, 2007; Wang *et al.*, 2010). After, rust full developed (approximately 12-15 days) five single uredinia were separately isolated from each sample to inoculate the seedlings of the highly susceptible wheat variety (Morocco) to obtain enough urediniospores before testing for virulence on leaf rust differential lines.

Race identification

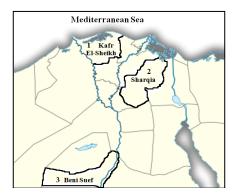
A series of 16 monogenic lines of 'Thatcher' wheat were used for race identification and nomenclature, which have different single gene for rust resistance to P. triticina (Table, 1). Each set contained four genotypes. The differential sets were grown in plastic pots (6 cm diameter) then inoculated according to the methods adopted by Stakman et al. (1962). Inoculated plants were subsequently transferred to a greenhouse bench and kept at $20 \pm 2^{\circ}$ C with relative humidity 40-60% and illuminated by about 15000 lux for 12 h each day. After 14 days, infection types were classified on a 0 to 4 scale, as described by Kolmer, (1991): 0 = immunity, no hypersensitive flecks or uredinia; 0; = faint hypersensitive flecks; 1 = small uredinia surrounded by distinct necrosis; 2 = small uredinia surrounded by distinct chlorosis; 3 = moderate size uredinia without chlorosis; and 4 = very large uredinia lacking chlorosis. Infection types from 0 to 2+ were considered 'low' infection types (L), while those of 3 to 4 were considered 'high' infection types (H) (Stakman et al., 1962; Long and Kolmer, 1989; Chu et al., 2009).

The North American race nomenclature system for *P. triticina* was carried out to design the leaf rust races in a letter code (Pt. code) as described by Long and Kolmer, (1989) and McVey *et al.* (2004). Races were assigned four-letter codes based on their infection type on the four sets of near isogenic lines (Table, 2)

Table 2. Code for the five Egyptian differentials for *Puccinia triticina*

Infection type produc	Infection type produced on monogenic lines:									
Host set 1	1	2a	2c	3						
Host set 2	9	16	24	26						
Host set 3	3ka	11	17	30						
Host set 4	10	18	21	2b						
В	L	L	L	L						
C	L	L	L	Н						
D	L	L	Н	L						
F	L	L	Н	Н						
G	L	Н	L	L						
Н	L	Н	L	Н						
J	L	Н	Н	L						
K	L	Н	Н	Н						
L	Н	L	L	L						
M	Н	L	L	Н						
N	Н	L	Н	L						
P	Н	L	Н	Н						
Q	Н	Н	L	L						
R	Н	Н	L	Н						
S	Н	Н	Н	L						
T	Н	Н	Н	Н						

Pt- code consists of the description for set 1 followed by that for set 2, etc. for example, race MGBL; set 1 (M)- virulent to Lr 1, 3; set 2 (G)- virulent to Lr 16; set 3 (B)- avirulent; set 4 (L) virulent to 10, L = 1 low infection type (a virulent race), H = 1 high infection type (virulent race).


Virulence frequency and gene efficacy

The frequency of virulence was estimated as the percentage of virulent isolates to the total number of isolates tested for each genotype. Also, leaf rust resistance genes (Gene efficacy %) was evaluated according to the following equations adopted by Green (1965) as follows:

Virulence frequency (%) = $\underline{\text{No. of virulent isolates}}$ X 100 Total number of isolates Gene efficacy (%) = $\underline{\text{No. of avirulent isolates}}$ X 100 Total number of isolates

Virulence and distribution frequencies of the *P. triticina* races (phenotype)

Phenotype of the *P. triticina* races were determined for the three agroecological geographic Governorates surveyed in Egypt as illustrated in Fig. (1). Pearson correlation coefficient ® was calculated for each pair of race gene efficacy and Governorates to display relationship between virulence diversity of leaf rust races in three Governorates and leaf rust resistance gene efficacy.

Figure 1. A map of Egypt showing the three agro-ecological areas where wheat fields were surveyed for leaf rust samples in 2014-15 and 2015-16. (1) Northern (Kafr El-Sheikh Gov.); (2) Eastern (Sharqia Gov.) and (3) Southern (Beni Suef Gov.)

Cluster analysis

A similarity matrix of virulence phenotypes of the areas 1, 2 and 3 based on the simple matching coefficient was used to construct a dendogram using the unweighted pair group method with arithmetic means clustering method (UPGMA) in numerical taxonomy system (NTSYS-pc version 2.1) according to Rohlf, (2000). Cluster analysis was performed using SPSS 6.0 software package.

Results

Race identification and geographical distribution

Infected wheat leaves with *Puccinia triticina* were collected from Wheat Rust Trap Nursery which cultivated at the three locations. Races were isolated and identified in the two successive growing seasons 2014-2015 and 2015-2016. Three single uredinal isolates were taken from each infected sample and tested using 16 wheat monogenic lines at seedling stage in the greenhouse. Thirty-seven and 90 different virulence formula were obtained in the first and second seasons, respectively. The obtained results revealed that, 37 virulent wheat leaf rust races were identified in 2014-2015 from 37 single-uredinial isolates that were tested on the differential tester monogenic lines (*Lr genes*) (Table, 3). We identified 37 physiologic races of *P. triticina* in Egypt using the North American system of nomenclature during 2014/15 season (Table, 3). These could be divided into eleven groups according to 'Unified System' i.e. (B) races BBBB, BBGK, BCBB, BDBB, BFJN, BFBB, BFBL,

BFDF, BKSB, BKDB and BKSB; **(C)** CBJS; **(D)** DKJB, DKKL, DKMB, DKNN and DKTD; **(J)** JKJJ; **(L)** LBHQ, LBSB, LJCB, LIHS and LTJB; **(M)** MTJT; **(N)** NHSL, NKCL, NKDK and NKJL; **(P)** PKGL and PTKF; **(Q)** QDSC and QKLD; **(S)** SKBP; **(T)** THFL, TPQJ, TSPJ and TTQT.

Table 3. Number and frequency (%) of *Puccinia triticina* virulence phenotypes

in the three Governorates during 2014-15 growing season

	In the three Governorates during 2014-15 growing season										
No.	Pheno	Virulence formula	Virulence		ea 1		ea 2		ea 3		otal
	-type		frequency%		%	No	%	No	%	No	%
1	BBBB	0.	0	0	0	1	2.70	0	0	1	2.70
2	BBGK	11,18,21,2b.	25.0	0	0	0	0	1	2.70	1	2.70
3	BCBB	26.	6.25	1	2.70	0	0	0	0	1	2.70
4	BDBB	24.	6.25	0	0	1	2.70	0	0	1	2.70
5	BFJN	24,26,11,17,10,21.	37.5	1	2.70	0	0	0	0	1	2.70
6	BFBB	24,26.	12.50	1	2.70	0	0	0	0	1	2.70
7	BFBL	24,26,10.	18.75	0	0	0	0	1	2.70	1	2.70
8	BFDF	24,26,17,21,2b.	31.25	0	0	0	0	1	2.70	1	2.70
9	BKSB	16,24,26,17.	25.00	0	0	0	0	1	2.70	1	2.70
10	BKDB	16, 24, 26, 3ka, 11, 17.	37.50	1	2.70	0	0	0	0	1	2.70
11	BKSB	3,11,17,18,21,2b.	37.50	1	2.70	0	0	0	0	1	2.70 2.70
12 13	CBJS DKJB	2c, 16, 24,26,11,17. 2c, 16,24,26,10.	37.50 31.25	1 1	2.70 2.70	0	$0 \\ 0$	0	$0 \\ 0$	1	2.70
14	DKJB	2c, 16, 24, 26,3ka.	31.25	0	0	0	0	1	2.70	1	2.70
15	DKKL	2c, 16, 24, 26, 3ka, 17, 10, 21.	50.00	0	0	0	0	1	2.70	1	2.70
16	DKNN	2c, 16, 24, 26, 3ka, 17, 10, 21. 2c, 16, 24, 26, 3ka, 11,17,30,21.	56.25	1	2.70	0	0	0	0	1	2.70
17	DKINI	1,11,30,10,18.	31.25	0	0	0	0	1	2.70	1	2.70
18	JKJJ	1, 2c, 3, 16, 24,26,11,10.	50.00	0	0	0	0	1	2.70	1	2.70
19	LBHQ	1, 3ka, 11, 17.	25.00	1	2.70	0	0	0	0	1	2.70
	LBSB	1,16,24,30.	25.00	1	2.70	0	0	0	0	1	2.70
	LJCB	1,9,11,30,10,18,21.	43.75	1	2.70	Ö	0	Ö	0	1	2.70
22	LLHS	1,9,16,24,26,11,17.	43.75	0	0	0	0	1	2.70	1	2.70
	LTJB	1, 9, 16, 24,26,11,17.	43.75	0	0	1	2.70	0	0	1	2.70
24	MTJT	1, 2c, 16, 26, 3ka, 11, 17, 10.	50.00	0	0	1	2.70	0	0	1	2.70
25	NHSL	1, 2c, 16, 24,26,30,10.	43.75	1	2.70	0	0	0	0	1	2.70
	NKCL	1, 2c, 16, 24, 26, 17, 18, 21,2b.	56.25	1	2.70	0	0	0	0	1	2.70
27	NKDK	1, 2c, 16,24,26,11,17,30,10.	56.25	1	2.70	0	0	0	0	1	2.70
28	NKJL	2a, 2c, 16,24,26,11,17,18,21.	56.25	0	0	0	0	1	2.70	1	2.70
29	PKGL	1, 2c, 3, 16, 24,26,11,10.	50.00	0	0	1	2.70	0	0	1	2.70
30	PTKF	1, 2a, 24, 3ka, 11, 17,2b.	43.75	0	0	1	2.70	0	0	1	2.70
31	QDSC	1, 2a, 16, 24, 26, 3ka, 21.	43.75	0	0	0	0	1	2.70	1	2.70
32	QKLD	1, 2a, 2c, 16, 24, 26, 10, 21,2b.	56.25	0	0	0	0	1	2.70	1	2.70
33	SKBP	1, 2a, 2c, 3, 16, 26,17,30,10.	56.25	0	0	1	2.70	0	0	1	2.70
34	THFL	1, 2a, 2c, 3, 16, 26,17,30,10.	56.25	0	0	1	2.70	0	0	1	2.70
35	TPQJ	1, 2a, 2c 3, 9, 24, 3ka,17,30,18, 21.	68.75	0	0	1	2.70	0	0	1	2.70
36	TSPJ	1,2a,2c,3,9,16,24,3ka,17,30,18, 21.	75.00	0	0	1	2.70	0	0	1	2.70
37	TTQT	1,2a,2c,3,9,16,24,26,3k,11,10,	87.50	0	0	1	2.70	0	0	1	2.70
	Total	18,21,2b.		14		11		12		37	
	equency			14	37.8	11	29.7	1 4	32.4	31	100
rr	%				31.8		49.1		32.4		100
	/0										

Area 1= Kafr El -sheikh, Area 2= Sharqia, Area 3= Beni Suef.

Data present in Table (3) revealed that during 2014-2015 growing season race TTQT was the most frequent (87.50%) followed by TSPJ (75.00%) and TPQJ (68.75%). Race TTQT was virulent to fourteen *Lr* genes, *i.e.* (1, 2a, 2c, 3, 9, 16, 24, 26, 3ka, 11, 10, 18, 21 and 2b) while TSPJ was virulent to twelve *Lr* genes *i.e.* (1, 2a, 2c, 3, 9, 16, 24, 3ka, 17, 30, 18 and 21) and TPQJ to eleven *Lr* genes *i.e.* (1, 2a, 2c, 3, 9, 24, 26, 3ka, 11, 18 and 21). On the other hand, race BBBB was avirulent to all resistance *Lr* genes (0.00% frequency of virulence). The rest of races were ranging between (6.25% - 56.25%).

In season 2015-16 ninety physiologic races of *P. triticina* were identified (Table, 4). These could be divided into twelve groups according to 'North American System'. Data in Table (4) revealed that, 90 virulent races of wheat leaf rust were identified from 106 single-uredinial isolates that were tested on the Thatcher lines. Race TTTQ and PTTT were the most frequent (93.75%) followed by TTKS and TTQT (87.50%). All Races was virulent to fourteen *Lr* genes, *i.e.* (1, 2a, 2c, 3, 9, 16, 24, 26, 3ka, 11, 10, 18, 21 and 2b) while, race BBBB was found in all areas and was avirulent to all resistance *Lr* genes (0.00% frequency of virulence). The rest of races were ranging between (6.25% - 75.0%). Races varied in their found location, distribution and frequency. BBBB was the weakest race, but was the normal frequent, making up 2.7% in 2014/15 (Table, 3) and medium frequent 3.76% in 2015-16 respectively (Table 4). Race BBBT were highest frequent 5.76% in 2015-16 which also were less virulent.

Table 4. Number and frequency (%) of *Puccinia triticina* virulence phenotypes in the three Covernments during 2015, 16 growing access.

in the three Governorates during 2015-16 growing season

No	Pheno-	Virulence formula				Are		Area		Total	
•	type		frequenc y%	No	%	No	%	No	%	No	%
1	BBBB	0.	0	2	6.06	1	3.84	1	2.32	4	3.84
2	BBBC	2b.	6.25	0	0	0	0	1	2.32	1	0.96
3	BBBD	21.	6.25	1	3.03	0	0	0	0	1	0.96
4	BBBL	10.	6.25	1	3.03	0	0	0	0	1	0.96
5	BBBN	10,21.	12.5	0	0	1	3.84	1	2.32	2	1.92
6	BBBR	10,18,2b.	18.75	0	0	1	3.84	1	2.32	2	1.92
7	BBBP	10,21,2b.	18.75	2	6.06	0	0	0	0	2	1.92
8	BBBT	10,18,21,2b.	25.0	0	0	0	0	6	13.9	6	5.76
9	BBDB	24.	6.25	0	0	0	0	1	2.32	1	0.96
10	BBGK	11,18,21,2b.	25.0	0	0	0	0	1	2.32	1	0.96
11	BCHB	26,11,30.	18.75	0	0	1	3.84	0	0	1	0.96
12	BDBB	24.	6.25	0	0	1	3.84	0	0	1	0.96
13	BDCB	24,30	12.5	1	3.03	0	0	0	0	1	0.96

14	BDGB	24,26	12.5	1	3.03	0	0	0	0	1	0.96
No	Pheno-	Virulence formula	Virulence	Area		Area		Area		Tota	
•	type		frequenc y%	No	%	No	%	No %		No	%
15	BFBB	24,26.	12.5	1	3.03	1	3.84	0	0	2	1.92
16	BFGB	24,26,11.	18.75	0	0	0	0	1	0	1	0.96
17	BGGL	16,11,10.	18.75	0	0	0	0	1	2.32	1	0.96
18	BJDD	16,24,17,21.	25.0	0	0	1	3.84	0	0	1	0.96
19	BKGL	16,24,26,11,10.	31.25	0	0	0	0	1	2.32	1	0.96
20	BKKT	16,24,26,11,17,30,10,18,21 ,2b	62.5	0	0	1	3.84	0	0	1	0.96
21	BKTB	16,24,26,3ka,11,17,30	43.75	1	3.03	0	0	0	0	1	0.96
22	BKTT	16,24,26,3ka,11,17,30,10,1 8,21,2b.	68.75	1	3.03	0	0	1	2.32	2	1.92
23	BTBT	9,16,24,26,10,18,21,2b.	50.0	1	3.03	0	0	0	0	1	0.96
24	BTCT	9,16,24,26,30,10,18,21,2b.	56.25	0	0	0	0	1	2.32	1	0.96
25	CDGT	3,24,11,10,18,21,2b.	56.25	0	0	1	3.84	0	0	1	0.96
26	DBDD	2c, 17, 21.	43.75	0	0	1	3.84	0	0	1	0.96
27	DFRG	2c, 24, 26, 3ka, 11, 30,18.	18.75	1	3.03	0	0	0	0	1	0.96
28	DKBB	2c, 16, 24, 26.	43.75	1	3.03	0	0	0	0	1	0.96
29	DSKJ	2c, 9, 6,24,11,17,30,18,21.	25.0	1	3.03	0	0	0	0	1	0.96
30	GTTP	2c,9,16,24,26,3ka,17,11,30 ,10,21,2b.	56.25	1	3.03	0	0	0	0	1	0.96
31	KDTS	16,24,26,17,3ka,	31.25	0	0	0	0	1	2.32	1	0.96
32	LBHB	1,11,30.	18.75	0	0	0	0	1	2.32	1	0.96
33	LCBB	1,26.	12.50	1	3.03	0	0	0	0	1	0.96
34	LDBC	1,24,2b.	18.75	0	0	1	3.84	0	0	1	0.96
35	LFQQ	1, 24, 26, 3ka, 11, 10, 18.	43.75	1	3.03	0	0	0	0	1	0.96
36	LFTH	1, 24, 26, 3ka, 11, 17, 30, 18,2b.	43.75	1	3.03	0	0	0	0	1	0.96
37	LHJJ	1,16,26,11,17,18,21.	56.25	1	3.03	0	0	0	0	1	0.96
38	LGDB	1,16,17.	18.75	1	3.03	0	0	0	0	1	0.96
39	LGMJ	1, 16, 3ka, 30, 18, 21.	37.50	0	0	0	0	1	2.32	1	0.96
40	LJTC	1, 16, 24, 3ka, 11, 17, 30,2b.	50.0	2	6.06	1	3.84	1	2.32	1	0.96
41	LKCG	1,16,24,26,30,18	37.5	1	3.03	0	0	0	0	1	0.96
42	LKCL	1,16,24,26,30,10	37.5	0	0	0	0	1	2.32	1	0.96
43	LKHL	1,16,24,11,30,10.	50.0	0	0	1	3.84	0	0	1	0.96
44	LKJP	1,16,24,11,17,10,21,2b.	37.5	0	0	0	0	1	2.32	1	0.96
45	LKLQ	1, 16, 24, 3ka, 10, 18.	37.5	0	0	0	0	1	0	1	0.96
46	LKPQ	1, 16, 24, 26, 3ka,17,30,10,18	56.25	1	3.03	0	0	1	2.32	2	1.92
47	LKQQ	1, 16,24,26,3ka, 11,10,18	50.0	0	0	1	3.84	0	0	1	0.96
48	LTGD	1, 9,16,24,26, 11, 21.	43.75	0	0	1	3.84	0	0	1	0.96
49	LTJB	1,9,16,24,26,11,17.	43.75	0	0	1	3.84	0	0	1	0.96
50	MBNQ	1, 3, 3ka, 17, 10, 18.	37.5	0	0	0	0	1	2.32	1	0.96

51	MJTT	1,3,16, 26, 3ka, 11, 17, 30, 10, 18, 21,2b.	75.0	1	3.03	0	0	0	0	1	0.96
No ·	Pheno- type	Virulence formula	Virulence frequenc y%	Are: No	a 1 %	Are: No	a 2 %	Area 3 No %		Total No %	
52	MKSS	1 ,3,6,24,26,3ka,11,17,10,18, 21.	68.75	0	0	0	0	1	0	1	0.96
53	MKTD	1,3,6,24,26,3ka,11,17,30,2	62. 5	1	3.03	0	0	0	0	1	0.96
54	MTKG	1,3,9,16,24,26,3ka,11,17,3 0, 18.	68.75	0	0	0	0	1	2.32	1	0.96
55	NDSJ	1, 2c, 24, 3ka, 11, 17, 18,21	50.0	0	0	0	0	1	2.32	1	0.96
56	NGJB	1, 2c, 16, 24, 3ka, 11,17,30, 10,18,2b.	68.75	1	3.03	0	0	0	0	1	0.96
57	NJTR	1,2c, 16,24,26,11,10.	43.75	0	0	0	0	1	2.32	1	0.96
58	NKGD	1, 2c,16,24,26,11,10.	43.75	0	0	0	0	1	2.32	1	0.96
59	NKGL	1, 2c, 16,24,26,11,10.	43.75	0	0	1	3.84	0	0	1	0.96
60	NKPQ	1,2c,16,24,26,3ka,11,17,30 , 10,18	68.75	0	0	1	3.84	0	0	1	0.96
61	NKQL	1,2a,16,24,26,3ka,11,10.	50.0	0	0	0	0	1	2.32	1	0.96
62	NKST	1,2c,16,24,26,3ka,11,17,10 , 18,21,2b.	75.0	0	0	0	0	1	2.32	1	0.96
63	NKTL	1,2c,16,24,26,3ka,11,17,30 ,10.	62.5	0	0	1	3.84	0	0	1	0.96
64	PCFJ	1, 2c,3,26,17,30, 18,21.	50.0	0	0	0	0	1	2.32	1	0.96
65	PGDQ	1, 2c,3, 16, 17, 10,18	43.75	0	0	1	3.84	0	0	1	0.96
66	PHTK	1,2c,3,16,26,3ka,11,17,30, 10,18,21,2b.	81.25	1	3.03	0	0	0	0	1	0.96
67	PKDC	1, 2c,3, 16,24,26,17,2b.	50.0	0	0	1	3.84	0	0	1	0.96
68	PKTF	1, 2c,3,16,24,26,3ka,11,17, 30,21,2b.	75.0	1	3.03	0	0	0	0	1	0.96
69	PKTJ	1, 2c,3,16,24,26,3ka,11,17, 30, 18,21.	75.0	1	3.03	0	0	0	0	1	0.96
70	PRFC	1, 2c,3,9,16, 26, 17,30,2b.	56.25	0	0	0	0	1	2.32	1	0.96
71	PTKF	1, 2c,3,9,16,24,26,11,17,30, 21,2b.	75.0	0	0	1	3.84	0	0	1	0.96
72	PTTT	1,2c,3,9,16,24,26,3ka,11,1 7,30,10,18,21,2b	93.75	0	0	0	0	1	2.32	1	0.96
73	QDGB	1,2a, 24,11.	25.0	1	3.03	0	0	0	0	1	0.96
74	QHFN	1,2a,1626, 17,30,10,21.	50.0	0	0	0	0	1	2.32	1	0.96
75	QKHS	1,2a16,24,26,11,30,10,18,2	62.5	0	0	0	0	1	2.32	1	0.96
76	QKKS	1,2a,16,24,26,11,17,30,10, 18,	68.75	2	6.06	0	0	0	0	2	1.92
77	QTJS	21. 1,2a,9,16,24,26,3ka,11,17, 10, 18,21.	75.0	0	0	1	3.84	0	0	1	0.96

78	SFTB	1,2a,2c,24,26,3ka,11,17,30	56.25	0	0	1	3.84	0	0	1	0.96
79	SHRG	1,2a,2c, 16,26,3ka,11,30,18	56.25	0	0	0	0	1	2.32	1	0.96
80	SKBB	1,2a,2c,16,24,26.	37.5	0	0	1	3.84	0	0	1	0.96
No	Pheno-	Virulence formula	Virulence	Area	1	Area	ı 2	Area	ı 3	Tota	l
•	type		frequenc y%	No	%	No	%	No	%	No	%
81	SKGB	1,2a,2c, 16,24,2611.	43.75	0	0	1	3.84	0	0	1	0.96
82	SKTG	1,2a,2c,16,24,26,3ka,11,17 ,30, 10,18	75.0	0	0	0	0	1	2.32	1	0.96
83	SKTL	1,2a,2c,16,24,26,3ka,11,17,30, 10.	68.75	0	0	0	0	1	2.32	1	0.96
84	TGGP	1,2a,2c,3, 16,11,17,30,10,21, 2b.	68.75	0	0	0	0	1	2.32	1	0.96
85	TJRT	1,2a,2c,3, 16,24,3ka,11,30,10, 18,21,2b.	81.25	0	0	0	0	1	2.32	1	0.96
86	TPQJ	1,2a,2c,3,9,16,24,26,3ka,1 1,18,21.	75.0	0	0	1	3.84	0	0	1	0.96
87	TSRJ	1,2a,2c,3,9,16,24, 11,17,30,18, 21.	75.0	0	0	1	3.84	0	0	1	0.96
88	TTKS	1,2a,2c,3,9,16,24,26,11,17, 30,10,18,21.	87.5	0	0	1	3.84	0	0	1	0.96
89	TTQT	1,2a,2c,3,9,16,24,26,3ka,1 1,10,18,21,2b	87.5	0	0	1	3.84	0	0	1	0.96
90	TTTQ	1,2a,2c,3,9,16,24,26,3ka,1 1,17,30,10,18	93.75	1	3.03	1	3.84	0	0	2	1.92
Tota	ıl			33		30		43		106	
Free	uency %				31.1		28.3		40.5		100

Area 1= Kafr El sheikh, Area 2= Sharqia, Area 3= Beni Suef.

Number and frequency of P. triticina race groups collected from Egyptian wheat during 2014-2016 growing seasons

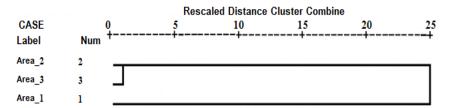
Physiologic races of *Puccinia triticina* were identified as a major race groups by the two letter codes for the first two sets of 8 monogenic differential wheat lines (*Lr* genes) at seedling stage in the greenhouse condition during 2014-2016 growing seasons.

Data arranged in Tables (3 and 4) revealed the number of isolates and percentage of frequency for each race group studied. Seven race groups i.e. BB-, BF-, BK-, DK-, LK-, SK- and TT- were common, which found them in both seasons, but with different frequencies. As regard to number of race groups and frequency, data in Table (5) revealed that in 2014-2015 growing season race group DK-- was the most frequency (13.51%) followed by TT--(10.81%). In contrast, the two race groups LK-- and SK- had the lowest frequencies. Their frequencies were lesser than 2.70%. However, other race groups ranged from 5.40% to 8.10%. The three race groups NK--, PK-- and

QK—were disappeared in the first season. On the other hand, during 2015-2016 growing season, the two race groups DK-- and TT-- had lowest frequency (1.11%). While the race group BB-- had the highest frequency (23.33%) and other race groups ranged from 2.20% to 4.44%. However, race group TT--showed the most virulent frequency (100%) which, was virulent to eight *Lr genes* (1, 2a, 2c, 3, 9, 16, 24 and 26) followed by SK-- and PK-- (75.00%) were virulent to six *Lr genes* (1, 2a, 2c, 16, 24 and 26) and (1, 2c, 3, 16, 24 and 26) respectively. It was also showed that, race groups NK- and QK- (62.5%) were virulent to five *Lr genes* (1, 2c, 16, 24, and 26) and (1, 2a, 16, 24 and 26) respectively. On the other hand, race group BB-- was avirulent to all resistance *Lr* genes (0.00%). The rest of races were ranging between 25.0% - 50%.

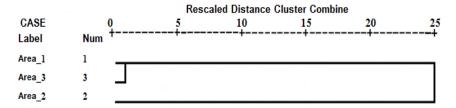
Table 5. Virulence formula and frequency (%) of *Puccinia triticina* race groups in Egypt during 2014-2016

No	Race group	Virulence formula	Virulence frequency%		st season 014-15	Second season 2015-16		
				No. of isolates	Frequency%	No. of isolates	Frequency%	
1	BB	0.	0	2	5.40	21	23.33	
2	BF	24,26.	25.0	3	8.10	2	2.20	
3	BK	16,24,26.	37.5	3	8.10	4	4.44	
4	DK	2c, 16, 24, 26.	50.0	5	13.51	1	1.11	
5	LK	1,16,24,26.	50.0	1	2.70	8	8.90	
6	NK	1, 2c, 16, 24, 26.	62.5	-	0	6	6.70	
7	PK	1, 2c, 3,16,24,26.	75.0	-	0	3	3.33	
8	QK	1, 2a, 16, 24, 26.	62.5	-	0	3	3.33	
9	SK	1, 2a, 2c, 16, 24, 26.	75.0	1	2.70	4	4.44	
10	TT	1, 2a, 2c, 3, 9,16, 24,26.	100	4	10.81	1	1.11	
11	*Other	(less than 3 isolates)		18	48.64	37	41.11	
Tota	1			37	100%	90	100%	


*others: race groups recorded frequency less than 3 isolates were excluded from the table.

Similarity of identified race groups at different geographical areas

Cluster similarity matrix analysis (Fig. 2) indicated that, races of *P. triticina* in the geographical areas within Egypt through 2014-2016 growing seasons are divided into two main groups depending on their distribution. In 2014-15 the first group includes races found in the 2 (11 race) and 3 (12 race) areas (Eastern and Southern). Another group includes the area 1 (14 race) sampled from Northern area (Fig 2). While, in 2015-16 the first group includes races found in the 1 (33 race) and 3 (43 race) areas (Northern and Southern).


Another group include the area 2 (30 race) sampled from Eastern area (Fig 3). Area 1 is characterized by exposure to winds from Europe and Turkey. While, area 2 is affected by virulence *P. triticina* originating from the Eastern and area 3 from Northern and Eastern via the typical movement of winds in Egypt.

Dendrogram using Average Linkage (Between Groups)

Figure 2. Dendrogram of similarity for virulent and distribution of *Puccinia triticina* race groups at three Governorates of Egypt in 2014-15, Area 1= Kafr El sheikh, Area 2= Sharqia, Area 3= Beni Suef

Dendrogram using Average Linkage (Between Groups)

Figure 3. Dendrogram of similarity for virulent and distribution of *Puccinia triticina* race groups at three Governorates of Egypt in 2015-16, Area 1= Kafr El sheikh, Area 2= Sharqia, Area 3= Beni Suef

Virulence frequencies and gene efficacy%

The present work was concerned with the diversity in population of the *Puccinia triticina* and the frequency of the different virulence of the pathogen races against a set of 16 monogenic lines in the two growing seasons. Evaluation of the effectiveness Lr genes were included to serve the national breading programs for leaf rust resistance. Different virulence frequencies to the tested monogenic lines and the effectiveness of the leaf rust resistance (Lr) genes were presented in Table (6).

Data in Table, (6) and Fig. (4) revealed that, no major changes in the efficacy of the important leaf rust resistance (Lr) genes during the whole period of study. Apparently, similar trend was found in the two growing seasons. The

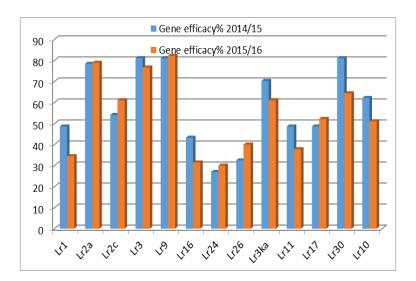

most effective genes i.e. *Lr 3, 9, 2a* and *2b*, were almost stable, showing little or no changes in their levels of efficacy against all the tested isolates. The lowest frequency of virulence (did not exceeded up to 30%) were found against *Lr 3, 9, 30,* 2a, *18, 26, 3ka* respectively. Inversely, the highest occurrence of virulence frequencies (ranging from 51.35% to 72.97%) was occurred against *Lr 1, 11, 17, 16, 26 and Lr 24* with an ascending order. Whereas, other lines under study displayed the relatively moderate responses, ranging from 37.85% to 45.93%. The lines only proved to have the highest and best efficacy (more than 71%) against the tested isolated i.e. *Lr9* (81& 82%), *Lr3* (81& 76%), *Lr2a* (78& 78%), *Lr 2b* (75& 71%), *Lr 30* (81& 64%) and *Lr 3ka* (70 & 61%) respectively, while, moderately and relatively low levels of gene efficacy (ranged from 27% to 64.44%) were recorded with the other leaf rust resistance genes under study.

Table 6. Virulence Frequencies (%) of *Puccinia triticina and* Gene efficacy (%) for leaf rust resistance genes in Egypt during 2014 – 2016

N0 *	Lr's	Accession number ¹	Pedigree ²	First se		Second 2015	
				Virulence frequency %	Gene efficacy %	Virulence frequency %	Gene efficacy %
1	Lr1	GSTR 402	Thatcher*6/Centenario	51.35	48.64	65.55	34.45
2	Lr2a	GSTR 403	Thatcher*6/Webster	21.62	78.38	21.11	78.89
3	Lr2c	GSTR 405	Thatcher*6/Brevit	45.94	54.06	38.88	61.11
4	Lr3	GSTR 406	Thatcher*6/Democrat	18.91	81.09	23.33	76.66
5	Lr9	GSTR 409	Thatcher*6/Aegilops umbellulata	18.91	81.09	17.77	82.22
6	Lr16	GSTR 417	Thatcher*6/Exchange	56.75	43.25	68.55	31.45
7	Lr24	GSTR 425	Thatcher*6/Agropyron elongatum	72.97	27.03	70.00	30.00
8	Lr26	GSTR 427	Thatcher*6/Imperial (rye)	67.55	32.45	60.00	40.00
9	Lr3ka	GSTR 408	Thatcher*6/Klein Aniversario	29.72	70.28	38.88	61.11
10	Lr11	GSTR 411	Thatcher*6/Hussar	51.35	48.64	62.22	37.77
11	Lr17	GSTR 418	Thatcher*6/Klein Lucero	51.35	48.64	47.77	52.22
12	Lr30	GSTR 430	Thatcher*6/Terenzio	18.91	81.09	35.55	64.44
13	Lr10	GSTR 410	Thatcher*6/Lee	37.83	62.17	48.86	51.12
14	Lr18	GSTR 419	Thatcher*6/Africa 43	24.32	75.68	46.66	53.34
15	Lr21	GSTR 422	Thatcher*6/Aegilops tauschii	37.83	62.17	42.22	57.78
16	Lr2b	GSTR 404	Thatcher*6/Agent	24.32	75.68	28.88	71.12

^{1.} Accession numbers in accordance with Research Service of Germplasm Resource Information Network (GRIN).

^{2.} Pedigree in accordance with Genetic Resources Information System for Wheat and Triticale (GRIS).

Figure 5. Gene efficacy% for leaf rust resistance genes in Egypt during 2014-2016

Discussion

Successful control of wheat leaf rust disease with race-specific gene resistance requires understanding the pathogenic races which present in the pathogen population. The impact of using the resistant cultivars on the frequencies of P. triticina races in Egypt dose not survive the summers in Egypt. Moreover, field observations showed that, the absence of alternate host, and the initial inoculum for each epidemic must come as windborne urediniospores from the neighboring countries (Abdel-Hak et al., 1974; Nazim et al., 2003; 2010). Thus, it is important to consider the amount of diversity for virulence within the pathogen population and the sources of primary inoculum. Clearly, if we could be identified the composition of pathogenic races in the external source that would be very importance to planning the use of genes for race-specific resistance to wheat leaf rust in Egypt (Mcvey et al., 2004; Negm et al., 2013). Therefore, the present work was concerned on the diversity of the causal organism and the frequency of the different virulence and occurrence with in different geographical areas in the country as important step for expanding knowledge of the epidemiology and population structure of wheat leaf rust in Egypt.

Obtained data during the tow growing seasons 2014/2016 clearly indicated that, a total of 127 physiologic races of *P. triticina* were identified among collected isolates. Also, survey of the virulence pathotypes in some

governorates in Egypt showed that race TTQT was the most frequent followed by TSPJ and TPQJ in 2014-2015 growing season. In 2015/2016, race TTTQ and PTTT were the most frequent followed by TTKS and TTQT. Similar results were reported by Najeeb *et al.* (2005); Kolmer *et al.* (2012); Soliman *et al.* (2012); Negm *et al.* (2013); Mohamed, *et al.* (2016). These previous findings suggest that, population of wheat leaf rust in Egypt is made up of a great diversity of races indicated an external source of primary inoculum for the fall-sown wheat crop each year. Also, this showed that, the source of airborne urediniospores is consistent from year to year.

Races varied in their found location, distribution and frequency. BBBB was the weakest race, but was the normal frequent, making up 2.7% in 2014/15 (Table, 3) and medium frequent 3.76% in 2015-16 respectively (Table 4). Race BBBT were highest frequent 5.76% in 2015-16 which also were less virulent. Race BBBT is widespread and was found in each growing season as reported previously for Lebanon and Turkey (Kassem, 2010), Egypt (McVey *et al.*, 2004) and Syria (Kassem *et al.*, 2015). Our study confirms that, Egypt has a rich supply of physiologic races of *P. triticina*. This is likely due to its geographic location, and throughout the growing season its exposure to winds originating from multiple countries of origin urediniospores. In addition, the spread of the alternate host (*Thalictrum* spp.) in neighboring countries from North such as European countries and from the North Eastern i.e. Turkey, Iraq, Lebanon, Syria and Iran, makes this region exposed to the emergence of new races (Kassem *et al.*, 2015).

Frequencies of race groups based on IT's of the first two sets of leaf rust North American race nomenclature system of wheat leaf rust differential monogenic lines were compared in three governorates in Egypt. Seven race groups i.e. BB-, BF-, BK-, DK-, LK-, SK- and TT- were common, which were found at all seasons, but with different frequencies. Data in Table (5) revealed that in 2014-2015 growing season race group DK-- was the most frequency followed by TT--. In contrast, the two race groups LK-- and SK- had the lowest frequencies. The three race groups NK--, PK-- and QK—were disappeared in the first season. On the other hand, during 2015-2016 growing season, the two race groups DK-- and TT-- had lowest frequency. While, the race group BB-had the highest frequency. These results run in the same trend with those of (Nazim et al., 2010; Khadegah Najeeb, 2013; Walid et al., 2015). The occurrence of races in a specific season and region depends on the type of wheat cultivars grown and the major environmental conditions, especially temperature (Roelfs et al., 1992). Also, due to the long-distance dispersal of leaf rust races (Kolmer, 2005; Hanzalova and Bartos, 2014).

Similarity between leaf rust populations in different locations under study presented that, races of *P. triticina* in the geographical areas within Egypt through 2014-2016 growing seasons are divided into two main groups depending on their distribution. Area 1 is characterized by exposure to winds from Europe and Turkey. While, area 2 is affected by virulence *P. triticina* originating from the Eastern and area 3 from Northern and Eastern via the typical movement of winds in Egypt. Similar findings were also reported by Negm *et al.* (2013).

Virulence against leaf rust resistance genes showed that Lr 1, Lr 11, Lr 17, Lr 16, Lr 24 and Lr 26 genes were susceptible. While, Lr 9, Lr 3, Lr 2a, Lr 2b, Lr 30, and Lr 3ka proved to have the highest and best efficacy against the tested race groups. Apparently, similar trend was found in the two growing seasons. The most effective genes i.e. Lr 3, 9, 2a and 2b, were almost stable, showing little or no changes in their levels of efficacy against all the tested isolates. Similar results were described by Khadegah Najeeb (2013); Omara (2013); Mohammed et al. (2014) and Esmail et al. (2015).

Acknowledgement

The author would like to offer particular thanks to the Department of Wheat Diseases, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt. Also, this research was financially supported by Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.

References

- Abdel-Hak, T. M., El-Shehedi, A. A. and Nazim, M. (1974). The source of inoculum of wheat leaf rust in relation to wind direction in Egypt. Egyptian journal of phytopathology. 6:17-25.
- Ahmad, S., Khan, M. A., Haider, M. M., Iqbal, Z., Iftikhar, Y. and Hussain, M. (2010). Comparison of yield loss in different wheat varieties/lines due to leaf rust disease. Pakistan Journal of Phytopathology. 22:13-15.
- Burdon, J. J. and Silk, J. (1997). Sources and patterns of diversity in plant-pathogenic fungi. Phytopathology. 87:664-669.
- Chu, C. G., Friesen, T. L., Xu, S. S., Faris, J. D. and Kolmer, J. A. (2009). Identification of novel QTLs for seedling and adult plant leaf rust resistance in a wheat doubled haploid population. Theoretical and Applied Genetics. 119:263-269.
- Elyasi-Gomari, S. and Lesovaya, G. M. (2009). Harmfulness of wheat leaf rust in Eastern part of forest-steppe of Ukraine. Archives of Phytopathology and Plant Protection. 42:659-665.

- Esmail, R. M., Sattar, A. A., Mahfouze, H. A., Mahfouze, S. A. and Abou-Ellail, M. A. (2015). Evaluation of leaf rust resistant by detection of *Lr* genes in new Egyptian wheat lines. Research Journal of Pharmaceutical, Biological and Chemical. 6:1215-1222.
- Green, G. J. (1965). Stem rust of wheat, rye and barley in Canada in 1964. Canadian Plant Disease Survey. 45:23-29.
- Hanzalova, A and Bartos, P. (2014). Virulence surveys of wheat leaf rust in the Czech Republic and resistance genes in registered cultivars. Czech Journal of Genetics and Plant Breeding. 50:241-246.
- Hassan, M. A., Abu Aly, A. A. and Amal, E. E. (2012). Losses in wheat grain yield due to leaf rust caused by *Puccinia triticina* Eriks. Mansoura Journal of Plant Protection and Pathology. 9:959-966.
- Kassem, M. (2010). Identification of Genetic Variation and Resistant Gene(s) of Wheat Leaf Rust Using Molecular Markers in Syria and Lebanon. (PhD Thesis). Aleppo University, Syria.
- Kassem, M., El-Ahmed, A., Hazzam, H. and Nachit, M. (2015). Physiologic specialization of *Puccinia triticina* in Syria. Phytopathologia Mediterranea. 54:446-452.
- Khadiga- Najeeb, M. A. (2013). Studies on Wheat Leaf Rust Disease and Virulence in Egypt. (Master's Thesis). Cairo University.
- Khan, M. A. (1987). Wheat variety development and longevity of rust resistance. Government of Punjab Agriculture Department, Lahore. pp. 197.
- Kolmer, J. A. (1991). Phenotypic diversity in two populations of *Puccinia recondita* f. sp. *tritici* in Canada during 1931-1987. Phytopatholog. 81:311-315.
- Kolmer, J. A. (2005). Tracking wheat rust on a continental scale. Current Opinion. Plant Biology. 8:441-449.
- Kolmer, J. A. (2013). Leaf Rust of Wheat: Pathogen Biology, Variation and Host Resistance. Forests. 4:70-84.
- Kolmer, J. A. and Ordoñez, M. E. (2007). Genetic differentiation of *Puccinia triticina* populations in Central Asia and the Caucasus. Phytopathology. 97:1141-1149.
- Kolmer, J. A., Long, D. L. and Hughes, M. E. (2012). Physiologic specialization of *Puccinia triticina* on wheat in the United States in 2010. Plant Disease. 96:1216-1221.
- Long, D. L. and Kolmer, J. A. (1989). A North American system of nomenclature for *Puccinia recondita* f. sp. *tritici*. Phytopathology. 79:525-529.
- McDonald, B. A. and Linde, C. (2002). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica. 124:163-180.
- McVey, D. V., Nazim, M., Leonard, K. J. and Long, D. L. (2004). Patterns of virulence diversity in *Puccinia triticina* on wheat in Egypt and the United States in 1998-2000. Plant Disease. 88:271-279.
- Mohamed C. S., Boutros, H., Atef, A. B. and Kamal, O. A. (2016). Identification of leaf rust resistance genes in selected ten Egyptian bread wheat cultivars. International Journal of Biochemistry and Biotechnology. 5:689-696.
- Mohammed, S. A., Abd-Elmageed, M. K., Omaima Abd-Ellatif, A. E., Ahmed, F. E., Nader, A. A. and Ibrahim, S. D. (2014). Identification of Leaf Rust Resistance Genes in

- Egyptian Wheat Cultivars by Multipathotypes and Molecular Markers. Journal of Plant Sciences. 2:145-151.
- Najeeb, M. A., Boulot, O. A., Musa, M. M. and Negm, S. S. (2005). Physiological specialization in *Puccinia triticina* and postulated genes of resistance in certain Egyptian wheat cultivars. Annals of Agricultural Science Moshtohor Journal. 43:265-278.
- Nazim, M., Aly, M. M., Shafik, I. and Abd Elmalek, N. (2010). Frequency of virulence and virulence formula of wheat leaf rust races identified in Egypt during 2004/05-2007/08. Egyptian journal of phytopathology. 38:77-88.
- Nazim, M., El-Shehidi, A. A., Abdou, Y. A. and El-Daoudi, Y. H. (1983). Yield loss caused by leaf rust on four wheat cultivars under epiphytotic levels. 4th Confer. Microbiol., Cairo. pp. 17-27.
- Nazim, M., Imbaby, I. A. and Mohmoud, S. T. (2003). Geographic distribution and virulence survey of races of *Puccinia triticina* f.sp. *tritici* leaf rust of wheat in Egypt during 2000/01-2001/02. Journal of Environmental Sciences. 79:847-864.
- Negm, S. S., Boulot, O. A. and Hermas, G. A. (2013). Virulence dynamics and diversity in wheat leaf rust (*Puccinia triticina*) populations in Egypt during 2009/2010 and 2010/2011 growing seasons. Egyptian journal of applied science. 28:183-212.
- Ola Mabrouk, I. A. (2012). Studies on wheat leaf rust disease in Egypt. MSc. Thesis, Plant Pathology, Faculty of Agriculture, Kafr El-Sheikh University. pp.130.
- Omara, R. I. (2013). Identifications of Wheat Leaf Rust Resistant Genes in Some Newly–Developed Egyptian Wheat Cultivars. (Ph.D. Thesis). Cairo University.
- Ordonez, M. E., German, S. E. and Kolmer, J. A. (2010). "Genetic Differentiation within the *Puccinia triticina* Population in South America and Comparison with the North American Population Suggests Common Ancestry and Inters Continental Migration," Phytopathology 100:376-383.
- Roelfs, A. P., Singh, R. P. and Saari, E. E. (1992). Rust Diseases of Wheat: Concept and Methods of Disease Management, Mexico, D. F: CIMMYT. pp. 81.
- Rohlf, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 2.1. Exeter software: Setauket, New York, USA.
- Soliman N. E., Abdelbacki, A. M., Najeeb, M. A. and Omara, R. I. (2012). Geographical distribution of physiological races of *Puccinia triticina* and postulation of resistance genes in new wheat cultivars in Egypt. ESci Journal of Plant Pathology. 1:73-80.
- Stakman, E. C., Stewart, D. M. and Loegering, W. Q. (1962). Identification of physiologic races of *Puccinia graminis* var. *tritici*. ARS, United States Department of Agriculture, Agricultural Research Service. Bull. E-617. pp. 513.
- Thabet, M and Khadiga Najeeb, M. A. (2017). Impact of Wheat Leaf Rust Severity on Grain Yield Losses in Relation to Host Resistance for Some Egyptian Wheat Cultivars. Middle East Journal of Agriculture Research. 6:1501-1509.
- Walid, M. E., Minaas, E. S., Reda, O. and Nagwa, A. E. (2015). Geographical distribution of *Puccinia triticina* physiologic races in Egypt during 2012-2014 growing seasons. African Journal of Agricultural Research. 10:4193-4203.

Wang, Y., Peng, H., Liu, G., Xie, C., Ni, Z., Yang, T., Liu, Z. and Sun, Q. (2010). Identification and molecular mapping of a leaf rust resistance gene in spelt wheat landrace Altgold. Euphytica. 174:371-375.

(Received: 5 October 2018, accepted: 25 December 2018)