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Abstract The article is reviewed the current and existing methods of fragrant rice crop yield 

and production forecasts in Thailand and their potential application for seasonal prediction.  

While several government agencies have carried out the forecast task, however, the further 

research is needed in order to minimize risk and maximize efficiency of agricultural resources.  

Incorporation of emerging methods could lead to a new strategy to forecast yields and 

production as well as to provide timely and reliable forecasts, by adopting integrated agro-

informatic tools.  The manual crop cutting, end-of-season farmer surveys, remote sensing, 

spatial databases and decision support system tools and simulation models were reviewed.  We 

concluded that the spatial databases and climate and crop simulation models provided the 

opportunities to establish an inclusive and integrated platform for farmers, government agencies 

and private firms to participate in the important task of seasonal forecasting for fragrant rice 

production systems in Thailand.  
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Introduction 

 

Timely and accurate crop yield estimation is an essential management 

tool to regulate the common agricultural markets (Supit, 1997).  The estimated 

results are used by multiple stakeholders in several ways to improve crop 

production outcomes by minimizing inputs and maximizing efficiency in 

sustainable agricultural practice and precision farming (Challinor, 2009; Zhang 

et al., 2002).  An estimation of seasonal crop yield is necessary for agricultural 

information systems, and tools for this have been developed for cotton in the 

southeastern United States (Baigorria et al., 2010; Mauget et al., 2013), several 
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crops in Europe (Cantelaube and Terres, 2005), and rice in the Philippines 

(Koide et al., 2013).  At a plot level of crop production, using process-oriented 

models for seasonal yield forecasts may help to optimize crop management 

decisions such as site-specific chemical fertilizer application rates (Ratjen and 

Kage, 2015).  

The purpose of this review is to provide a summary of crop and rice yield 

and production forecasts using various methods and to discuss methods focused 

specifically on fragrant rice (also known as jasmine rice) in Thailand, using 

simulation models and spatial databases currently and routinely operated by 

various agencies in the Ministry of Agriculture and Cooperatives and the 

Ministry of Science and Technology in Thailand. 

 

A photoperiod-sensitive rice production ecosystem in Thailand 

 

In 2015, Thailand had a total land area of approximately 51 million 

hectares, allocated as non-agricultural lands (11 million hectares), forest lands 

(16 million hectares) and agricultural lands (24 million hectares).  Of the 

agricultural lands, approximately 9.3 million hectares were allocated for rice 

paddies during the main rice-growing season between May and December 

(OAE, 2016).  There were two major photoperiod-sensitive rice varieties: RD6 

(glutinous rice) occupied an area of 1.7 million hectares and KDML 105 variety, 

(non-glutinous fragrant rice) covered an area of 4.0 million hectares (DOAE, 

2017). 

A rice production ecosystem is a major contributor to food security and 

generates cash income for farmers’ households and the country under various 

agroecosystems (AE).  The Thailand Rice Department has defined seven rice 

production ecosystems (Figure 1), based on provincial administrative 

boundaries in Thailand.  A successful rice paddy field depends on numerous 

abiotic and biotic factors, such as soil physical and chemical conditions, solar 

radiation, air temperature, rainfall and crop management (e.g., rice variety, 

planting date, fertilizer application and water management).  In addition, spatial 

soil properties and weather variability cause spatial and temporal rice yield 

variability.  As a result, a system for forecasting seasonal photoperiod-sensitive 

rice yields is an important tool for optimizing rice production ecosystems.   

In 2015, Thailand was one of the principal rice (Oryza sativa L.) 

exporting countries and earned foreign income of more than 150 billion Baht 

with around 30 percent of the total income from fragrant rice (TREA, 2016).  

During the main rice-growing season in 2015, the country allocated some 9.3 

million hectares or around 39% of the total agricultural land area of the whole 

Kingdom to paddy rice production (OAE, 2016).   
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Figure 1. Seven rice production ecosystems in Thailand. Source: Thailand Rice Department, 2018 
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Thai Hom Mali rice is the principal fragrant rice category, consisting of 

two varieties, namely KDML 105 and RD15 (NBACFS, 2017).  According to 

the farmers’ registration system used during the 2015/16 main rice-growing 

season by DOAE, the areas planted with rice varieties RD15, KDML 105 and 

other rice varieties are 0.3, 4.0 and 5.0 million hectares or 3%, 43% and 54% of 

the total rice-planted areas, respectively (DOAE, 2017). 

 

Current rice yield and production forecast methods 

 

The Office of Agricultural Economics (OAE) is the only agency under the 

Thai government’s Ministry of Agriculture and Cooperatives responsible for 

announcing and providing the official annual data sets that cover all major 

economic crops including rice.  In each main rice growing season, OAE 

releases forecasts and reports at a district level on rice planted areas, averaged 

paddy yield and total rice production.  The agency releases the report when rice 

planted areas have reached approximately 40% of the total areas and when rice 

is approaching the harvesting period using a statistical approach and crop 

cutting method (OAE, 2014, 2016).  In addition, the Geo-Informatics and Space 

Technology Development Agency (GISTDA) has been producing rice planted 

areas digital maps with estimates of rice yield at fortnightly intervals since 2013.  

The digital maps and related information are then published and distributed in 

shapefile format on GISTDA’s website (GISTDA, 2018).  To estimate the 

paddy rice production of a given polygon in the shapefile, the average 

fortnightly paddy rice yield of a fixed rice-cropping duration of 120 days after 

planting was multiplied by the area of planted rice determined from satellite 

images.  In summary, the methods implemented by OAE and GISTDA do not 

account for the dynamics of weather and soil conditions or for rice varieties and 

rice management practices in various rice ecosystems.  Consequently, there is a 

need for an integrated agro-informatics system to support the realistic 

estimation of paddy rice yield and production, which allows the users to 

incorporate weather, soil, rice variety and management practices data sets.  

Furthermore, the forecasts could be issued three to four months prior to the 

harvest period using process-oriented crop simulation models and spatial and 

attribute data sets, including seasonal weather forecasts, soil groups, and rice-

planted areas, so that better planning can occur. 

 

Emerging crop yield and production forecast methods 

 

Crop yield and production forecasts for seasonal growing periods are of 

interest for farmers, traders and policy makers.  Various crop yield forecast 
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methods have been developed for quantifying production of agricultural 

systems at plot, region or national levels.  Sapkota et al. (2016) compared 

various methods of crop production estimation with their cost-effectiveness, 

scale and accuracy (Table 1).  Brief descriptions of each method follow. 

 

Crop cutting 

 

In the 1950s, a method of forecasting crop yields by randomly sampling 

frames about 1 meter by 1 meter square within a field was initially developed in 

India.  The crop cutting method was subsequently adopted as a standard 

recommended by the Food and Agriculture Organization of the United Nations 

(FAO) to estimate and forecast crop production at the harvesting period for 

various crops (FAO, 1982; Fermont and Benson, 2011; Sapkota et al., 2016).  

In this method, crop yields in one or more frames were measured and total crop 

yield per unit area was calculated as the total production divided by the total 

plot area.  Sapkota et al. (2016) suggested that the size of the sampling frames 

should be at least one-meter square to obtain reasonable and acceptable crop 

yield and production forecasts.  In a field with variable crop performance, it 

was advisable to use even larger sampling frames or increase the number of 

sampling frames for crop yield estimation, but it was a time and labor-intensive 

method. 

 

Remote sensing 

 

The remote sensing method is based on the principle of differing spectral 

reflectance of surfaces, i.e., crops and other land surfaces.  The sensors on 

board a satellite were used to collect the reflected electromagnetic radiation 

signals from the surfaces, which subsequently are used to calculate the 

Normalized Difference Vegetable Index (NDVI).  According to Johnson et al. 

(2016), the Moderate Resolution Imaging Spectroradiometer (MODIS)-NDVI 

was the most effective NDVI value to forecast crop yields by Multiple Linear 

Regression.  However, the NDVI tracked only the vegetative development, but 

could not determine crop grain yield (Mkhabela et al., 2005).   

In Thailand, GISTDA, which is under the Ministry of Science and 

Technology, is the only Thai Government agency in charge of providing 

fortnightly data on planted-rice areas.  The data has been derived from the 

MODIS satellite observations since January 2014 and is provided in shapefile 

format.  However, these shapefiles currently do not include seasonal rice yield 

forecasts by integrating a crop simulation model and seasonal climate forecasts 

(GISTDA, 2018). 
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Rice Simulation Models 

 

Process-based crop simulation models, including the CSM-CERES-Rice 

model (Ritchie et al., 1987; Singh et al., 1989), were designed to simulate rice 

developmental stages and growth on a daily time scale.  Moreover, these 

models can respond to and capture different environment factors, such as 

planting date, rice variety, water management, nitrogen chemical fertilizer 

management and crop residue (Basso et al., 2016; Hoogenboom, 2000; 

Hoogenboom et al., 2017; Jones et al., 2003; Tsuji et al., 1998).  Jintrawet and 

Kaeomuangmoon (2016) developed a prototype of an integrated agro-

informatics system tool called the DSS-SRY4cast tool for users to forecast 

paddy rice yield four to six months in advance for six different planting dates 

during the 2016 main rice-growing season in Thailand.  However, they did not 

specifically focus on KDML 105 at the district level. 

The process-based crop and rice simulation models were used to simulate 

crop growth, developmental stages, and yields that are influenced by soil profile 

characteristics, daily weather data, crop variety and crop management on a 

daily time step from planting until harvesting times (Hoogenboom, 2000).  It 

was found that these crop simulation models could be accurate and precise 

when they were calibrated and evaluated with field observations from various 

sites under real crop production situations (Hunt and Boote, 1998).  However, 

the accuracy of forecasted crop yields can be improved when there are 

outbreaks of pests or plant diseases by linking pest effects to the crop model 

(Teng et al., 1998). 

ORYZA2000 simulation model: The International Rice Research 

Institute (IRRI) and Wageningen University and Research Centre have 

developed the ORYZA2000 model to simulate growth and developmental 

stages of lowland rice in situations with variations of potential production, such 

as water limits and nitrogen limits (Bouman et al., 2001).  The ORYZA2000 

model had four phenological phases: the juvenile phase, the photoperiod-

sensitive phase, the panicle development phase and the grain-filling phase 

(Arora, 2006).  The model followed a daily calculation scheme for the rate of 

dry matter production of various rice organs and for the rate of phenological 

development.  By integrating these rates over time, dry matter production and 

developmental stages were simulated throughout the growing season (Bouman 

and van Laar, 2006).  The ORYZA2000 model was not designed and tested for 

photoperiod-sensitive rice varieties.  The newest version has been renamed 

“ORYZA version 3 (v3)” (Li et al., 2017).  According to Amiri et al. (2014), 

the comparison of the performance of three rice dynamic models (CSM-

CERES-Rice, AquaCrop, and ORYZA2000) in simulating biological processes 
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and grain yields of rice showed that the CERES-Rice model was the most 

accurate in approximating grain yields under different irrigation intervals and 

nitrogen applications.   

 

Table 1. Crop yield forecast methods with description of cost effectiveness, 

intended scale and precision 
Crop yield 

forecast 

methods 

Cost effectiveness Scale Precision in forecast, error and 

bias 

Crop cut Time and labor 

intensive 

Field, farm and 

sometimes 

landscape level 

Tendency to overestimate 

Farmer’s 

estimate 

Cheap and quick 

method that saves 

time and money 

Farm to 

landscape 

Fairly accurate estimation but 

needs adequate supervision. 

Subjective. Sometimes farmers 

deliberately overestimate or 

underestimate. 

Crop 

modeling 

Cost effective Plot to 

Landscape 

Less error and bias if adequately 

parameterized and calibrated. 

Does not include induced 

improvements in agricultural 

technology 

Remote 

sensing 

Cost effective Landscape Chances of error in cases where 

different crops have same 

signature 

Source: Sapkota et al. (2016) 

 

CSM-CERES-Rice simulation model: The Decision Support System for 

Agrotechnology Transfer (DSSAT) was designed to accommodate 16 

simulation crop models (CSM) from the CROPGRO and CERES models and 

has primary modules for weather, soil, plant, soil-plant-atmosphere, and crop 

management (Jones et al., 2003).  The CERES-Rice model, a model under the 

DSSAT package, was developed to simulate nine rice developmental stages, 

rice growth processes, and biomass partitioning of a rice crop on a daily basis 

according to climatic data, water and nitrogen balances and cultivar 

characteristics (Ritchie et al., 1998; Timsina and Humphreys, 2006).  Bannayan 

et al. (2003) indicated that the CERES-Rice model has demonstrated reliability 

under different climate, soil, and management conditions.  Chun et al. (2016) 

and Jintrawet and Chinvanno (2011) assessed the impacts of climate change on 

rice yields in Southeast Asia using the projected climate data from two climate 

change models.  Using the CSM-CERES-Rice model together with climate 

change A2 and B2 scenarios as predicted by the PRECIS RCM, downscaled 

from the ECHAM4 GCM data set, they concluded that during 1980-2099, rice 

production in Thailand showed changes, with slight declines in main season 
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rice yields before the 2040s and drastic decreases after this time. Similar rice 

yield decreases were found when output from the Conformal Cubic 

Atmospheric Model (CCAM) downscaled projections for the RCP4.5 and 8.5 

scenarios (Katzfey et al., 2014; Katzfey et al., 2016) were used with the CSM-

CERES-Rice model (Jintrawet et al., 2017). 

The CSM-CERES-Rice model emphasizes the effects of crop 

management and the influence of weather conditions and soil properties on crop 

performance.  The model was designed to assess rice yield as captured by rice 

varietal characteristics.  The model was also used to decide on how best to 

implement soil water and nitrogen management for alternative production 

options and for various growing sites.  Weather inputs include daily solar 

radiation, maximum and minimum temperatures and precipitation.  Potential 

effects of extreme events, i.e., storm events, and high and low temperature are 

ignored, and no pest infestations are assumed.  The influence of carbon dioxide 

(CO2) on photosynthesis and transpiration has recently been added to assess the 

impact of increased CO2 on rice yield under various climate change scenarios.   

The CSM-CERES-Rice model version 4.7, within DSSAT v4.7, has daily 

outputs and requires four minimum data sets, namely weather, soil, rice genetic 

coefficients, and rice management practices throughout the growing season 

(Table 2).   

 

Available spatial databases in Thailand 

 

KDML105 rice-planted area maps 

 

GISTDA released maps of areas planted with rice fortnightly and posted 

the data set on their website (Mitkalaya et al., 2013).  These rice planted areas 

were processed from the MODIS surface reflectance 8-day L3 Global 250 m 

SIN Grid V005 or MOD09Q1 data set from 2013 to 2015 (Bridhikittti and 

Overcamp, 2012).  To obtain the planted area for KDML105 rice, we linked the 

fortnightly rice-planted areas shapefile, released by GISTDA six times during 

the main growing season from June to August in 2013, 2014, and 2015, with 

the farmer registration database administered and operated by the DOAE.  By 

linking data from these two sources, we created the KDML105 planted-area 

shapefiles data sets with administration codes for the 2013 to 2015 growing 

seasons for six planting dates for each growing season (Table 1).  During the 

periods of these six planting dates, on average all 77 districts received about 

180–300 mm of rain per month, which is sufficient to produce a reasonably 

good rice crop (Yoshida, 1981). 
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Table 2. Contents of minimum data sets for operation of the CSM-CERES-Rice 

model 
Data set Description 

Required minimum data sets 

Weather  Daily global solar radiation, maximum and minimum air temperatures, 

precipitation 

Soil  Classification using the local system and (to family level) the USDA-

NRCS taxonomic system 

 Basic profile characteristics by soil layer: in situ water release curve 

characteristics (saturated drained upper limit, lower limit); bulk density, 

organic carbon; pH; root growth factor; drainage coefficient 

Rice genetic 

coefficients 
 Four phenological and four growth coefficients for each rice variety. 

Crop 

Management 
 Soil water, ammonium and nitrate concentration by soil layer 

 Cultivar name and type 

 Planting date, depth and method; row spacing and direction; plant 

population 

 Irrigation and water management, dates, methods and amounts or 

depths 

 Chemical fertilizer (inorganic) applications 

 Residue (organic fertilizer) applications (material, depth of 

incorporation, amount and nutrient concentrations). 

Auxiliary data set 

Site  Latitude and longitude, elevation; average annual temperature; average 

annual amplitude in temperature 

 Slope and aspect; major obstruction to the sun (e.g. nearby mountain); 

drainage (type, spacing and depth); surface stones (coverage and size) 

Initiate conditions  Previous crop, root, and nodule amounts; numbers and effectiveness of 

rhizobia (nodulating crop) 

Source: Jones et al. (2003). 

 

Seasonal weather forecasts in Thailand  

 

Weather conditions have significant impacts on crop growth and 

developmental stages and have major impacts on pests and diseases, so crop 

yield variability is affected by year-to-year climatic variability (Hoogenboom, 

2000).  Accurate forecasts of weather 3–6 months in advance can potentially 

allow farmers and policy makers in various agricultural systems to make proper 

decisions to reduce unwanted impacts or take advantages of expected favorable 

climate and weather conditions (Jones et al., 2000). 

Statistical seasonal weather forecast data sets, generated from the historic 

range of climate variations, can be applied to estimate current crop conditions 

or potential yields.  During the beginning of the crop growing season these 

forecasts have ranges of predictions for variables such as temperature and 
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rainfall rather than specific values due mainly to the incorporation of all 

historical climate variability, leading to a large range of possible outputs from 

the models.  Dynamical seasonal climate models, such as the Weather Research 

and Forecasting (WRF) model, offer the opportunity to narrow this range, 

contingent on the models having adequate predictive skill (Brown et al., 2018).  

WRF is a widely used open-source model that allows the users to create 

different configurations tailored to the needs of each study.  The WRF model is 

based on physical principles (Chotamonsak et al., 2011), and can provide 

probabilistic predictions of the seasonal mean climate.  It also generates daily 

time series of the evolution of the weather and thus provides more detailed 

information on the weather statistics during the season. These daily time series 

can be used to drive applications models such as a crop model; however, some 

spatial downscaling of the data may be required.  Grosz et al. (2015) applied 

and tested WRF with the DNDC model (DeNitrification DeComposition Model) 

for greenhouse gas flux simulation.  Kioutsioukis et al. (2016) applied high 

resolution (2-kilometer grid) WRF ensemble forecasting data to irrigation.  

Capa-Morocho et al. (2016) found that disaggregating seasonal climate 

forecasts into daily weather data and using it as input data for crop simulation 

models provided predictability for crop yield and production.  The crop yield 

forecasts and irrigation requirements from the crop model could be considered 

as a production cost and were used to analyze likely gross margins to help 

farmers making a decision when the seasonal rainfall forecast was below 

normal. 

Applications of weather forecast data sets to agricultural decision 

problems are, therefore, numerous and rely on the possibility of translating the 

meteorological content of the forecasts into agricultural terms.  Users can gain 

economic benefits from weather information for short-term (tactical) decisions 

as well as long-term (strategic) decisions.  In many areas of the world, access to 

seasonal weather forecasts is still limited, but efforts are being undertaken at 

various levels to improve on this situation (Calanca, 2014). 

 

Decision support system tools in Thailand 

 

Jintrawet (2009) developed the Crop Production Systems Decision 

Support System (CropDSS), which consists of the Spatial Database 

Management System (SDBMS), Model Base Management System (MBMS), 

analysis programs and map display functions (Figure 2).  This tool facilitated 

linking of four minimum spatial databases, namely administrative boundary, 

crop planted areas, soil series boundary, and climate grid maps with four crop 

simulation models under the DSSAT package. 
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The CropDSS agro-informatics tool was used to simulate potential rice 

production options for Thailand under various climate change scenarios. Under 

the ECHAM4 SRES A2 scenario, predictions of rainfed rice production in the 

Chi and Moon River Basin in the northeast of Thailand show that rice yield will 

be increased at the rates of 15.5 and 11.1 percent compared to recent Chi and 

Moon rice yields, respectively, by the year 2099 (Buddhaboon and Jintrawet, 

2009). When data from multiple high-resolution (10 km) downscaled 

simulations produced using the Conformal Cubic Atmospheric model (Katzfey 

et al., 2014; Katzfey et al., 2016) for two CMIP5 RCPs (lower 4.5 and high 8.5 

greenhouse gas concentrations) were input into the CROPDSS agro-informatics 

tool, it was shown that most projections give a decrease in rice yields during 

2006–2040 relative to the baseline (Jintrawet et al., 2017). 

 

 
 

Figure 2. Overview of the components and modular structure of CropDSS 

interface, Source: Jintrawet (2009) 

 

Jintrawet and Kaeomuangmoon (2016) have developed an agro-

informatics prototype called the DSS-SRY4cast tool for users to produce rice 

yield forecasts 4-6 months in advance for six planting dates during the 2016 

main rice-growing season in Thailand.  However, there are no estimates of the 

environmental and economic risk of rice production scenarios in various parts 

of the country. 
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A reliable seasonal paddy rice yield forecast system requires as a 

minimum spatial data sets and attribute data sets, i.e., rice cropping 

management, rice planted area, soil group and seasonal weather forecast data 

sets, which are provided by various Thai agencies.  The rice-planted areas data 

set is updated fortnightly and the seasonal weather forecast data set is updated 

monthly.  Each data set is large and covers rice-planted areas throughout the 

country.  SDBMS can help to store large data sets and connect to GIS software 

to create maps, conduct data analysis and produce visualizations of spatial data 

(Tragila et al., 2010; Van Den Eeckhaut and Hervás, 2012; Jäger, 2018). 

 

Discussion  

 

Non-glutinous fragrant rice variety KDML 105 covered an area of 

approximately 4.0 million hectares or 43% of annual total rice planted in 

Thailand (DOAE, 2017; OAE, 2014, 2016).  Because rice is linked with food 

and income security of millions of small farm households, it is imperative and 

essential for the country to invest in the development and implementation of a 

reliable and accurate rice yield estimation tool (Supit, 1997). 

The availability of climate and crop simulation models and spatial data 

sets in Thailand offer a unique opportunity for integrating data and information 

on the bio-physical properties of the major staple food crop in various rice 

ecosystems in Thailand, especially fragrant rice KDML 105 (OAE, 2014, 2016; 

Mitkalaya et al., 2013).  Spatial data sets, together with geo-referenced maps 

and a dynamically downscaling climate model such as CCAM and WRF can be 

used for providing production forecasts and seasonal estimates of rice yield 3-4 

months in advance using an integrated agro-informatic tool.  The geo-

referenced maps from GISTDA and attribute data sets from other agencies in 

Thailand could be linked with other field-level data sets (GISTDA, 2018). 

 

Conclusion 

 

We have reviewed various methods and approaches for estimating 

seasonal fragrant rice production in Thailand.  Seasonal rice production 

techniques have advanced greatly over the last few decades and improved 

substantially in recent years.  These improvements were due to better 

understanding of soil-plant-weather-management processes, advances in 

computing, improved simulation models, increased availability of data and 

higher standards enhance the ability to implement decision support systems.  In 

conclusion, the real value of using simulation models and spatial data sets, 

combined as an integrated agro-informatic forecasting tool, as described in our 
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review, is that it will help the farmers and policy makers to collaboratively 

utilize and optimize agricultural resources for sustainable fragrant rice 

production systems. 
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