Advancements in Precision Cancer Medicine: Integrating Artificial Intelligence with Metabolomics for Enhanced Diagnostic and Prognostic Accuracy

ผู้แต่ง

  • Sujimon Mungkalarungsi -
  • ณัฐธกา ลิ่มระนางกูล
  • พิชญาภา อยู่ผ่อง
  • มัณฑนา คงธนกุศล
  • สุขณพัฒน์ จงสวัสดิ์วรกูล
  • สมปราชญ์ สุรทานต์นนท์
  • ปุณชญา ตปนียะสถิต
  • พัฐธิร์ชา เลี้ยววัฒนา

คำสำคัญ:

Metabolomics, Biomarker, Cancer, Artificial intelligence, Precision medicine

บทคัดย่อ

Cancer is a complex disease that requires continued research and advancements in prevention and treatment. Understanding the metabolic alterations that occur in cancer cells is essential for developing precision cancer medicine. Metabolomics has emerged as a powerful tool for studying cancer metabolism.By profiling the metabolite composition of a cancer, metabolomics enables the identification of metabolic signatures associated with specific cancer types and stages, as well as the discovery of novel biomarkers for diagnosis and prognosis. By combining artificial intelligence with metabolomics, scientists can reveal perspectives on cancer biology, leading to tailored therapeutic strategies. This article provides a comprehensive review of the integration of artificial intelligence and metabolomics in precision cancer medicine approaches.

References

Barberis, E., Khoso, S., Sica, A., Falasca, M., Gennari, A., Dondero, F., Afantitis, A. &

Manfredi, M. (2022). Precision Medicine Approaches with Metabolomics and Artificial Intelligence. Int J Mol Sci, 23(19), 11269.

Bifarin, O. O., & Fernández, F. M. (2023). Automated machine learning and explainable AI (AutoML-XAI) for metabolomics: improving cancer diagnostics. bioRxiv: the preprint server for biology, 2023.10.26.564244.

Bifarin, O. O., Gaul, D. A., Sah, S., Arnold, R. S., Ogan, K., Master, V. A., Roberts, D. L., Bergquist, S. H., Petros, J. A., Fernández, F. M., & Edison, A. S. (2021). Machine Learning-Enabled Renal Cell Carcinoma Status Prediction Using Multiplatform Urine-Based Metabolomics. J Proteome Res, 20(7), 3629-3641.

Buas, M. F., Gu, H., Djukovic, D., Zhu, J., Drescher, C. W., Urban, N., Raftery, D., & Li, C. I. (2016). Identification of novel candidate plasma metabolite biomarkers for distinguishing serous ovarian carcinoma and benign serous ovarian tumors. Gynecol Oncol, 140(1), 138-44.

Clish, C. B. (2015). Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud, 1(1), a000588.

Danzi, F., Pacchiana, R., Mafficini, A., Scupoli, M. T., Scarpa, A., Donadelli, M., & Fiore, A. (2023). To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther, 8(1), 137.

Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrom Rev, 26(1), 51-78.

Gaul, D. A., Mezencev, R., Long, T. Q., Jones, C. M., Benigno, B. B., Gray, A., Fernández, F. M., & McDonald, J. F. (2015). Highly-accurate metabolomic detection of early-stage ovarian cancer. Sci Rep, 5, 16351.

German, J. B., Hammock, B. D., & Watkins, S. M. (2005). Metabolomics: building on a century of biochemistry to guide human health. Metabolomics, 1, 3–9.

Han, J., Li, Q., Chen, Y., & Yang, Y. (2021). Recent metabolomics analysis in tumor metabolism reprogramming. Front Mol. Biosci, 8, 763902.

Hassan, M. A., Al-Sakkaf, K., Shait Mohammed, M. R., Dallol, A., Al-Maghrabi, J., Aldahlawi, A., Ashoor, S., Maamra, M., Ragoussis, J., Wu, W., Khan, M. I., Al-Malki, A. L., & Choudhry, H. (2020). Integration of Transcriptome and Metabolome Provides Unique Insights to Pathways Associated with Obese Breast Cancer Patients. Front Oncol, 10, 804.

Huang, J., Zhao, B., Weinstein, S. J., Albanes, D., & Mondul, A. M. (2022). Metabolomic profile of prostate cancer-specific survival among 1812 Finnish men. BMC Med, 20, 362.

Irajizad E, Wu, R., Vykoukal, J., Murage, E., Spencer, R., Dennison, J. B., Moulder, S., Ravenberg, E., Lim, B., Litton, J., Tripathym, D., Valero, V., Damodaran, S., Rauch, G. M., Adrada, B., Candelaria, R., White, J. B., Brewster, A., Arun, B., Long, J. P., Do, K. A., Hanash, S., & Fahrmann, J. F. (2022). Application of Artificial Intelligence to Plasma Metabolomics Profiles to Predict Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Front ArtifIntell, 5, 876100.

Jing, L., Guigonis, J. M., Borchiellini, D., Durand, M., Pourcher, T., & Ambrosetti, D. (2019). LC-MS based metabolomic profiling for renal cell carcinoma histologic subtypes. Sci Rep, 9(1), 15635.

Kanaan, Y. M., Sampey, B. P., Beyene, D., Esnakula, A. K., Naab, T. J., Ricks-Santi, L. J., Dasi, S., Day, A., Blackman, K. W., Frederick, W., Copeland, R. L., Sr., Gabrielson, E., & Dewitty, R.L., Jr. (2014). Metabolic profile of triple-negative breast cancer in African-American women reveal potential biomarkers of aggressive disease. Cancer Genomics Proteomics, 11(6), 279-94.

Katta, M. R., Kalluru, P. K. R., Bavishi, D. A., Hameed, M., & Valisekka, S. S. (2023). Artificial intelligence in pancreatic cancer: diagnosis, limitations, and the future prospects-a narrative review. J Cancer Res Clin Oncol, 149(9), 6743-6751.

Klupczynska, A., Derezinski, P., Garrett, T. J., Rubio, V. Y., Dyszkiewicz, W., Kasprzyk, M., & Kokot, Z. J. (2017). Study of early stage non-small-cell lung cancer using Orbitrap-based global serum metabolomics. J Cancer Res Clin Oncol, 143(4), 649-659.

Kumar, D., Gupta, A., Mandhani, A., & Sankhwar, S.N. (2016). NMR spectroscopy of filtered serum of prostate cancer: A new frontier in metabolomics. Prostate, 76(12), 1106-19.

Liberti, M. V., & Locasale, J. W. (2016). The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci, 41(3), 211-218.

Martínez-Reyes, I., & Chandel, N. S. (2021). Cancer metabolism: looking forward. Nat Rev Cancer, 21(10), 669-680.

McClain, K. M., Sampson, J. N., Petrick, J. L., Mazzilli, K. M., Gerszten, R. E., Clish, C. B., Purdue, M. P., Lipworth, L., & Moore, S. C. (2022). Metabolomic Analysis of Renal Cell Carcinoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Metabolites, 12(12), 1189.

Mbodi, L., Mathebela, P., & Dlamini, Z. (2023). Association of Metabolomics with AI in Precision Oncology: Emerging Perspectives for More Effective Cancer Care. Artificial Intelligence and Precision Oncology, 139-156.

Ngan, H. L., Lam, K. Y., Li, Z. C., Zhang, J. L., & Cai, Z. W. (2023). Machine learning facilitates the application of mass spectrometry-based metabolomics to clinical analysis: A review of early diagnosis of high mortality rate cancers. Trends Anal. Chem, 168, 117333.

Peng, F., Liu, Y., He, C., Kong, Y., Ouyang, Q., Xie, X., Liu, T., Liu, Z., & Peng, J. (2018). Prediction of platinum-based chemotherapy efficacy in lung cancer based on LC-MS metabolomics approach. J Pharm Biomed Anal, 154, 95-101.

Petrick, L. M., & Shomron, N. (2022). AI/ML-driven advances in untargeted metabolomics and exposomics for biomedical applications. Cell Rep Phys Sci, 3(7), 100978.

Ren, S., Shao, Y., Zhao, X., Hong, C. S., Wang, F., Lu, X., Li, J., Ye, G., Yan, M., Zhuang, Z., Xu, C., Xu, G., & Sun, Y. (2016). Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer. Mol Cell Proteomics, 15(1), 154-63.

Ruiying, C., Zeyun, L., Yongliang, Y., Zijia, Z., Ji, Z., Xin, T., & Xiaojian, Z. (2020).

A comprehensive analysis of metabolomics and transcriptomics in non-small cell lung cancer. PLoS One, 15(5), e0232272.

Schmidt, D. R., Patel, R., Kirsch, D. G., Lewis, C. A., Vander Heiden, M. G., & Locasale,

J. W. (2021). Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin, 71(4), 333-358.

Tsimberidou, A. M., Fountzilas, E., Nikanjam, M., & Kurzrock, R. (2020). Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat Rev, 86, 102019.

Xie, Y., Meng, W. Y., Li, R. Z., Wang, Y. W., Qian, X., Chan, C., Yu, Z. F., Fan, X. X., Pan, H. D., Xie, C., Wu, Q. B., Yan, P. Y., Liu, L., Tang, Y. J., Yao, X. J., Wang, M. F., & Leung, E. L. (2021). Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol, 14(1), 100907.

Downloads

เผยแพร่แล้ว

23-12-2024

How to Cite

Mungkalarungsi, S., ลิ่มระนางกูล ณ., อยู่ผ่อง พ., คงธนกุศล ม., จงสวัสดิ์วรกูล ส., สุรทานต์นนท์ ส., ตปนียะสถิต ป., & เลี้ยววัฒนา พ. (2024). Advancements in Precision Cancer Medicine: Integrating Artificial Intelligence with Metabolomics for Enhanced Diagnostic and Prognostic Accuracy. วารสารวิชาการวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏธนบุรี, 2(2), B15-B29. สืบค้น จาก https://li04.tci-thaijo.org/index.php/scidru/article/view/2716