Evaluation of soybean (Glycine max L.) under different salinity stress on seedling growth and biochemical responses.

Main Article Content

Jiamtae, P.
Touyjaroan, T.
Sarutayophat, T.
Nitthaisong, P.

Abstract

The effects of NaCl concentrations (0 mM, 40 mM, 80 mM, and 120 mM) on soybean growth, physiology, and biochemical were investigated. Increasing salinity decreased plant height, root length, leaf number, leaf greenness, biomass, and chlorophyll content, while proline levels increased. There were significant interactions between cultivars and NaCl concentrations in almost all parameters. At 120 mM, plant death was found in Chiang Mai 84-2 and Chiang Mai 60 cultivars, in contrast, the cultivar Nakhon Sawan 1 exhibited no plant death at any NaCl concentration, indicating its suitability for salinity stress.

Article Details

How to Cite
Jiamtae, P., Touyjaroan, T., Sarutayophat, T., & Nitthaisong, P. (2025). Evaluation of soybean (Glycine max L.) under different salinity stress on seedling growth and biochemical responses. International Journal of Agricultural Technology, 21(1), 59–72. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/4072
Section
Original Study

References

Abbaspour, H. (2012). Effect of salt stress on lipid peroxidation, antioxidative enzymes, and proline accumulation in pistachio plants. Journal of Medicinal Plant Research, 6:526-529.

AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H. and Abuelsoud, W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science, 7:276.

Abel, G. H. (1969). Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans. Crop Science, 9:697-698.

Absari, E. U. and Kuswanto, D. (2019). Respon beberapa genotip kacang tunggak (Vigna unguiculata L.) terhadap cekaman salinitas. Plantropica: Journal of Agricultural Science, 4:57-67.

Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J. and Hernandez, J. A. (2017). Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7:1-38.

Alharby, H. F., Al-Zahrani, H. S., Hakeem, K. R. and Iqbal, M. (2019). Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mungbean [Vigna radiata (L.) Wilczek] genotypes. Saudi journal of biological sciences, 26:1053-1060.

Al-Tawaha, A. R. M., Samarah, N., Ranga, A. D., Darvhankar, M. S., Saranraj, P., Pour-Aboughadareh, A., Siddique, K. H., Qaisi, A. M., Al-Tawaha, A. R. and Khalid, S. (2021). Soil Salinity and Climate Change. In Sustainable Soil and Land Management and Climate Change, Boca Raton, FL, USA, pp.83-93.

Amirjani, M. R. (2010). Effect of Salinity Stress on Growth, Mineral Composition, Proline Content, Antioxidant Enzymes of Soybean. American journal of Plant Physiology, 5:350-360.

Anjum, S. A., Ehsanullah, L., Xue, L., Wang, L., Saleem, M. F. and Huang, C. (2013). Exogenous benzoic acid (BZA) treatment can induce drought tolerance in soybean plants by improving gas-exchange and chlorophyll contents. Australian Journal of Crop Science, 7: 555-560.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24:1-15.

Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39:205-207.

Dolatabadian, A., Sanavy, S. A. M. M. and Ghanati, F. (2011). Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Scientia Biologicae, 3:41-45.

Egbichi, I., Keyster, M. and Ludidi, N. (2014). Effect of exogenous application of nitric oxide on salt stress responses of soybean. South African Journal of Botany, 90:131-136.

Egbichi, I., Keyster, M., Jacobs, A., Klein, A. and Ludidi, N. (2013). Modulation of antioxidant enzyme activities and metabolites ratios by nitric oxide in short-term salt stressed soybean root nodules. South African Journal of Botany, 88:326-333.

FAO (2021). Salt-Affected Soils. Food and Agriculture Organization of the United Nations. Retrieved from https://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affec.

Hamayun, M., Khan, S. A., Khan, A. L., Shin, J. H., Ahmed, B., Shin, D. H. and Lee, I. J. (2010). Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. Journal of Agricultural and Food Chemistry, 58:7226-7232.

Hasan. N., Suryani, E. and Hendrawan R. (2015). Analysis of soybean production and demand to develop strategic policy of food self sufficiency: a system dynamics framework. Procedia Computer Science, 72:605-612.

Hassani, A., Azapagic, A. and Shokri, N. (2021). Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications, 12:1-18.

Kadri, A., Chaabena, A., Abdelguerfi, A. and Laouar, M. (2021). Influence of salinity on germination and early seedling root growth traits of alfalfa (Medicago sativa L.) landraces collected in Southern Algerian oases. Agriculture and Natural Resources, 6:976-985.

Kang, S., Radhakrishnam, R., Khan, A. L., Kim, M., Park, J., Kim, B., Shin, D. and Lee, I. (2014). Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, 84:115-124.

Klein, A., Keyster, M. and Ludidi, N. (2015). Response of soybean nodules to exogenously applied caffeic acid during NaCl-induced salinity. South African Journal of Botany, 96: 13-18.

Ma, Y., Dias, M. C. and Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11:1-18.

Manyanon, N. and Banharn, S. (2016). Effect of Salinity on Physiological responses of Soybean (Glycine max (L.) Merr. cv Nakornsawan 1 and Chiangmai 60. Thai Agricultural Research Journal, 34:54-64.

Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167:645-663.

Omara, A. E. D. and El-Gaafarey, T. (2018). Alleviation of Salinity Stress Effects in Forage Cowpea (Vigna unguiculata L.) by Bradyrhizobium sp. Inoculation. Microbiology Research Journal International, 23:1-16.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Sadak, M. S., Abd El-Hameid, A. R., Zaki, F. S. A., Dawood, M. G. and El-Awadi, M. E. (2020). Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bulletin of the National Research Centre, 44:1-10.

Sheteawi, S. A. (2007). Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. International Journal of Agriculture and Biology, 9:473-478.

Simaei, M., Khavari-nezad, R. A. and Bernard, F. (2012). Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in NaCl-stressed soybean plants. American Journal of Plant Science, 3:1495-1503.

Togatorop, E. R., Sari, D. N. and Handayani, S. (2023). Effect of different salinity stress on seedling growth in long bean (Vigna sinensis L.) genotypes. International Journal of Agricultural Technology, 19:1919-1928.

Zhang, W., Liao, X., Cui, Y., Ma, W., Zhang, X., Du, H., Ma1, Y., Ning, L., Wang, H., Huang, F., Yang, H., Kan, G. and Yu, D. (2019). A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PloS Genet, 15:1-27.

Zhou, X., Tian, Y., Qu, Z., Wang, J., Han, D. and Dong, S. (2023). Comparing the Salt Tolerance of Different Spring Soybean Varieties at the Germination Stage. Plants, 12:2789.