Efficacy of indigenous Beauveria bassiana and Purpureocillium lilacinum for controlling Planococcus minor (Maskell) in durian fruits

Main Article Content

Anutrakunchai, S
Thongkamngam, T.

Abstract

Planococcus minor (Maskell) spread in durian fields has a great impact on durian farmers. Because P. minor can damage durian at almost every stage, from fruit setting to harvest. Therefore, it is necessary to select indigenous entomopathogenic fungi that have the potential to control P. minor in durian fruits. The efficacy of indigenous B. bassiana and P. lilacinum for controlling P. minor (Maskell) in durian friuts was investigated. Insect pest samples were collected from durian orchards in three provinces: Chanthaburi, Trat, and Rayong. The collected samples were morphological identified to confirm the presence of B. bassiana and P. lilacinum. The results indicated that both spore suspension of B. bassiana and P. lilacinum at 104, 106, and 108 spore/ml were able to inhibit all growth stages of all P. minor. The concentration of 108 spore/ml resulted in the highest mortality rates for P. minor nymphs, achieving 97% and 100%, respectively. In conclusion, indigenous B. bassiana and P. lilacinum should be applied to
P. minor
at the nymph stage rather than during the adult stage, as the nymphs are more susceptible affected entomopathogenic fungi.

Article Details

How to Cite
Anutrakunchai, S, & Thongkamngam, T. (2025). Efficacy of indigenous Beauveria bassiana and Purpureocillium lilacinum for controlling Planococcus minor (Maskell) in durian fruits. International Journal of Agricultural Technology, 21(2), 409–420. https://doi.org/10.63369/ijat.2025.21.2.409-420
Section
Original Study

References

Anutrakunchai, S., Tongla, T. and Thongkamngam, T. (2019). A Survey of Shot-Hole Borer (Xyleborus fornicates Eichoff.) Scolytidae: Coleoptera-an Insect pest on durian in chanthaburi province. In Proceedings of 3rd International Symposium on Agricultural Technology and 17th International Symposium on Biocontrol and Biotechnology at Krabi Resort, Krabi Thailand July 2-5, 2019, pp.118-123.

Boston, W., Leemon, D. and Cunningham, J. P. (2020). Virulence screen of Beauveria bassiana isolates for Australian Carpophilus (Coleoptera: Nitidulidae) beetle biocontrol. Agronomy, 10:1207.

Bukhari, T., Takken, W. and Koenraadt, C. J. M. (2011). Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasites & Vectors, 4:23-37.

Burckhardt, D., Ouvrard, D., Queiroz, D. and Percy, D. (2014). Psyllid hostplants (Hemiptera: Psylloidea): Resolving a semantic problem. Florida Entomologist, 97:242-246.

Dowd, P. E. and Vega, F. E. (2003). Autodissemination of Beauveria bassiana by Sap Beetle (Coleopterra: Nitidulidae) to overwintering sites. Biocontrol Science and Technology, 13:65-75.

El-Marzoky, A.M., Elnahal, A. S. M., Jghef, M. M., Abourehab, M. A. S., El-Tarabily, K. A. and Ali, M. A. M. S. (2023). Purpureocillium lilacinum strain AUMC 10620 as a biocontrol agent against the citrus nematode Tylenchulus semipenetrans under laboratory and field conditions. European Journal of Plant Pathology, 167:59-76.

Erler, F. and Ates, A. O. (2015). Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. Journal of Insect science, 15:44-62.

Fabrice, D. H., Elie, D. A., Kobi, D. O., Valerien, Z. A., Thomas, H. A., Joelle, T., Maurille, E. I. A. T., Denis, O. B. and Manuele, T. (2020). Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. Journal of Cotton Research, 3:24-45.

Hodkinson, I. D. (2009). Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. Journal of Natural History, 43:65-179.

Hodkinson, I. D. and Bird, J. M. (2006). Facultative parthenogenesis in Cacopsylla myrtilli (Wagner) (Hemiptera: Psylloidea) in northern Sweden. Entomologisk Tidskrift. 127:157-160.

Humber, R. (1997). Fungi: identification. In: Lacey, L. A. (Ed.), Manual of Technique in Insect pathology. (pp.153-163). Academic Press, San Diego, USA

Khan, M. and Tanaka, K. (2023) Purpureocillium lilacinum for plant growth promotion and biocontrol against root-knot nematodes infecting eggplant. PLoS ONE, 18:e0283550.

Luangsa-ard, J., Houbraken, J., Doorn, T. V., Hong, S. B., Borman, A. M., Hywel-jones, N. L. and Samson, R. A. (2011). Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. Federation of European Microbiological Societies (FEMS), 321: 141-149.

Mascarin, G. M. and Jaronski, S. T. (2016). The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology, 32:177-203.

Mascarin, G. M., Lopes, R. B., Delalibera, I. D., Fernandes, E. K. K, Luz, C. and Faria, M. (2019). Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology, 165:46-53.

Moreno-Gavira, A., Huertas, V., Dianez, F., Sanchez-Montesinos, B. and Santos, M. (2020). Paecilomyces and Its Importance in the biological control of agricultural pests and Diseases. Plants, 9:1746.

Muerrle, T. M., Neumann, P., Dames, J. F., Hepburn, H. P. and Hill, H. P. (2006). Susceptibility of adult Aethina tumida (Coleoptera: Nitidulidae) to entomopathogenic fungi. Journal of Economic Entomology, 99:1-6.

Perez-Rodriguez, J., Pekas, A., Tena, A. and Wackers, F. L. (2021). Sugar provisioning for ants enhances biological control of mealybugs in citrus. Biological Control, 157:104573.

Rajendran, J., Dubey, J., Kumar, V. and Sujayanand, G. K. (2024). Nematode egg parasitic fungus, Purpureocillium lilacinum: efficacy of indigenous strains for the management of Meloidogyne incognita in chickpea. Egyptian Journal of Biological Pest Control, 34:1-17.

Samson, R., Evans, H. and Latge, J. P. (1988). Atlas of Entomopathologenic fungi. Springer Verlag, 187p.

Tong, H., Omar, M. A. A., Wang, Y., Li, M., Li, Z., Ao, Y., Wang, Y., Jiang, M. and Li, F. (2024). Essential roles of histone lysine methyltransferases EZH2 and EHMT1 in male embryo development of Phenacoccus solenopsis. Communications Biology, 7:1-12.

Tong, H., Wang, Y., Wang, S., Omar, M. A. A., Li, M., Li, Z., Ding, S., Ao, Y., Wang, Y., Li, F. and Jiang, M. (2022). Fatty acyl-CoA reductase influences wax biosynthesis in the cotton mealybug, Phenacoccus solenopsis Tinsley. Communications Biology, 5:1-12.

Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C. and Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Envirmental Research and Pubil Health, 18:1112-1143.

Ullah, M. I., Arshad, M., Abdullah, A., Khalid, S., Iftikhar, Y. and Zahid, A. M. (2018). Use of the entomopathogenic fungi Beauveria bassiana (Hyphomycetes: Moniliales) and Isaria fumosorosea (Hypocreales: Cordycipitaceae) to control Diaphorina citri Kuwayama (Hemiptera: Liviidae) under laboratory and semi-field conditions. Egyptian Journal of Biological Pest Control, 28:75-80.

White, T. J., Bruns, T. D., Lee, S. B. and Taylor, J. W. (1999). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics: PCR Protocols a Guide to Methods and Applications. Academic Press.

Zapata, Q. I., Gonzalez, F. M. S., Santillana, L. E. J., Gonzalez, N. A. and Pacheco, G. F. L. (2020). Late effects of Beauveria bassiana on larval stages of Aedes aegypti Linneo, 1762 (Diptera: Culicidae). Brazilian Journal of Biology, 82:1-8.