In vitro biocontrol potential of natural substance combination against plant pathogens

Main Article Content

Somsri, A.
Saelao, P.
Thongsen, N.
Kenkhunthot, T.
Pilasombut, K.
Urairong, H.
Rumjuankiat, K.

Abstract

The antimicrobial potential of chitosan (CHT), banana peel vinegar (BPV) and plant-derived extracts from basil leaves (BE), fingerroot (FRE), and mangosteen peel (MSE) was evaluated against Diaporthe phaseolorum, Colletotrichum gloeosporioides, Fusarium oxysporum, Curvularia sp., and Xanthomonas campestris pv. campestris (Xcc). Among these, MSE and FRE exhibited the highest efficacy, with minimum inhibitory concentrations (MIC) of 0.006 mg/ml and 0.048 mg/ml, respectively. Both extracts also inhibited Xcc, showing partial synergistic effects with a fractional inhibitory concentration index (FICI) of 0.625. These results highlight the antimicrobial potential of natural compounds, offering valuable insights for developing sustainable strategies in plant disease management and biofungicide formulation.

Article Details

How to Cite
Somsri, A., Saelao, P., Thongsen, N., Kenkhunthot, T., Pilasombut, K., Urairong, H., & Rumjuankiat, K. (2025). In vitro biocontrol potential of natural substance combination against plant pathogens. International Journal of Agricultural Technology, 21(2), 685–696. https://doi.org/10.63369/ijat.2025.21.2.685-696
Section
Original Study

References

Abate, M., Pagano, C., Masullo, M., Citro, M., Pisanti, S., Piacente, S. and Bifulco M. (2022). Mangostanin, a xanthone derived from garcinia mangostana fruit, exerts protective and reparative effects on oxidative damage in human keratinocytes. Pharmaceuticals, 15(1):84.

Alsultan, Q. M. N., Sijam, K., Rashid, T. S. and Ahmad, K. B. (2016). GC-MS analysis and antibacterial activity of mangosteen leaf extracts against plant pathogenic bacteria. American Journal of Plant Sciences, 7:1013-1020.

Badawy, M. E. and Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011:1-29.

Byarugaba-Bazirake, G., Byarugaba, W., Tumusiime, M. and Kimono, D. (2014). The technology of producing banana wine vinegar from starch of banana peels. African Journal of Food Science and Technology, 5:1-5.

Caesar, L. K. and Cech, N. B. (2019). Synergy and antagonism in natural product extracts: when 1+1 does not equal 2. Natural Product Reports, 36:869-888.

Eng-Chong, T., Yean-Kee, L., Chin-Fei, C., Choon-Han, H., Sher-Ming, W., Li-Ping, C. T., Gen-Teck, F., Khalid, N., Abd Rahman, N., Karsani, S.A., Othman, S., Othman, R. and Yusof, R. (2012). Indonesian mangosteen fruit (garcinia mangostana l.) peel extract inhibits streptococcus mutans and porphyromonas gingivalis in biofilms In vitro. Evidence-Based Complementary and Alternative Medicine, 2012:473637.

España, M. D., Arboleda, J. W., Ribeiro, J. A., Abdelnur, P. V. and Guzman, J. D. (2017). Eucalyptus leaf byproduct inhibits the anthracnose-causing fungus Colletotrichum gloeosporioides. Industrial Crops and Products, 108:793-797.

Fontana, R., Caproni, A., Buzzi, R., Sicurella, M., Buratto, M., Salvatori, F., Pappadà, M., Manfredini, S., Baldisserotto, A. and Marconi, P. (2021). Effects of Moringa oleifera Leaf Extracts on Xanthomonas campestris pv. campestris. Microorganisms, 9:2244.

Hakalová, E., Čechová, J., Tekielska, D. A., Eichmeier, A. and Pothier, J. F. (2022). Combined effect of thyme and clove phenolic compounds on Xanthomonas campestris pv. campestris and biocontrol of black rot disease on cabbage seeds. Frontiers in Microbiology, 13.

Hua-Li, X., Yang, B., Yuan-Yuan, Z., Calderón-Urrea, A., Hu-Jun, W., Lu-Mei, P., Yi, W. and Yong-Cai, L. (2017). Effects of elicitors on trichothecene accumulation and Tri genes expression in potato tubers inoculated with Fusarium sulphureum. European Journal of Plant Pathology, 148:673-685.

Huang, X., You, Z., Luo, Y., Yang, C., Ren, J., Liu, Y., Wei, G., Dong, P. and Ren, M. (2021). Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. International Journal of Biological Macromolecules, 166:1365-1376.

Jamiołkowska, A. (2020). Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy, 10:173.

Ko, S. J., Kim, M. K., Bang, J. K., Seo, C. H., Luchian, T. and Park, Y. (2017). Macropis fulvipes venom component Macropin exerts its antibacterial and anti-biofilm properties by damaging the plasma membranes of drug resistant bacteria. Scientific Reports, 7:16580.

Kumar, S. and Gupta, O. (2012). Expanding dimensions of plant pathology. JNKVV Res. J, 46:286-293.

Kumar, S., Thakur, M. and Rani, A. (2014). Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. African Journal of Agricultural Research , 9:3838-3852.

Laura, O., Beatrice, C., Cinzia, F. and Luca, R. (2017). Chitosan in agriculture: A new challenge for managing plant disease. Biological Activities and Application of Marine Polysaccharides, A. S. Emad. Rijeka, IntechOpen: Ch. 2.

Lengai, G. M. W., Muthomi J. W. and Mbega, E. R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7: e00239.

Lima, M. D. C., De Sousa, C. P. , Fernandez-Prada, C., Harel, C., Dubreuil, J. and De Souza, E. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, 130:259-270.

Lopez-Moya, F., Suarez-Fernandez, M., and Lopez-Llorca, L. V. (2019). Molecular mechanisms of chitosan interactions with fungi and plants. International Journal of Molecular Sciences, 20:332.

Malicki, A., Zawadzki, W., Bruzewicz, S., Graczyk, S. and Czerski, A. (2004). Effect of formic and propionic acid mixture on Escherichia coli in fish meal stored at 12 C. Pakistan Journal of Nutrition, 3:353-356.

Medina-López, C. F., Plascencia-Jatomea, M., Cinco-Moroyoqui, F. J., Yépiz-Gómez, M. S., Cortez-Rocha, M. O. and Rosas-Burgos, E. C. (2016). Potentiation of antifungal effect of a mixture of two antifungal fractions obtained from Baccharis glutinosa and Jacquinia macrocarpa plants. Journal of Environmental Science and Health, Part B, 51:760-768.

Niño, J., Mosquera, O. M. and Correa, Y. M. (2012). Antibacterial and antifungal activities of crude plant extracts from Colombian biodiversity. Revista de Biologia Tropical, 60:1535-1542.

Nikkhah, M., Hashemi, M., Najafi, M. B. H. and Farhoosh, R. (2017). Synergistic effects of some essential oils against fungal spoilage on pear fruit. International Journal of Food Microbiology, 257:285-294.

Montri, N., Leujantuak, P., Bunya–atichart, K. and Deewatthanawong, R. (2020). Control of anthracnose in “Kluai Hom Tong” banana (Musa (AAA group)) using mangosteen pericarp crude extract. Thai Journal of Agricultural Science, 53:228-235.

Moopayak, W. and Tangboriboon, N. (2020). Mangosteen peel and seed as antimicrobial and drug delivery in rubber products. Journal of Applied Polymer Science, 137:49119.

Novodvorska, M., Stratford, M., Blythe, M. J., Wilson, R., Beniston, R. G. and Archer, D. B. (2016). Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth. Fungal Genetics and Biology, 94:23-31.

Pezzani, R., Salehi, B., Vitalini, S., Iriti, M., Zuñiga, F. A., Sharifi-Rad, J., Martorell, M. and Martins, N. (2019). Synergistic effects of plant derivatives and conventional chemotherapeutic agents: An update on the cancer perspective. Medicina (Kaunas),55(4).

Plumridge, A., Hesse, S. J., Watson, A. J., Lowe, K. C., Stratford, M. and Archer, D. B. (2004). The weak acid preservative sorbic acid inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification. Applied and Environmental microbiology, 70:3506-3511.

Qi, Y. H., Huang, L., Liu, G. F., Leng, M. and Lu, G. T. (2020). PilG and PilH antagonisticallycontrol flagellum-dependent and pili-dependent motility in the phytopathogen Xanthomonas campestris pv. campestris. BMC Microbiology, 20:1-14.

Rakkhumkaew, N. and Pengsuk, C. (2018). Chitosan and chitooligosaccharides from shrimp shell waste: characterization, antimicrobial and shelf life extension in bread. Food Science and Biotechnology, 27:1201-1208.

Rattanakreetakul, C., Jamkratoak, S., Leksomboon, C., Farungsang, N. and Farungsang, U. (2005). Chemical properties of essential oil from Krachai and their antifungal activity. Proceedings of 43rd Kasetsart University Annual Conference, Thailand, 697 p.

Riseh, R. S., Hassanisaadi, M., Vatankhah, M., Babaki, S. A. and Barka, E. A. (2022). Chitosan as a potential natural compound to manage plant diseases. Int J Biol Macromol, 220:998-1009.

Rueangrit, S., Eakjamnong, W. and Dethoup, T. (2019). Hidden synergistic effects of the combinations of plant extracts against plant pathogenic fungi. Journal of Biopesticides, 12:51-60.

Roudbary, M., Alimohammadi, A., Tavallaei, M. R., Zarimeidani, R and Nikoomanesh, F. (2023). Antifungal activity of Thymus kotschyanus extract: An in vitro study on the expression of CDR1 and CDR2 genes in clinical isolates of Candida albicans. Journal of Herbal Medicine, 38(100644).

Ryssel, H., Kloeters, O., Germann, G., Schäfer, T., Wiedemann, G. and Oehlbauer, M. (2009). The antimicrobial effect of acetic acid: an alternative to common local antiseptics. Burns, 35:695-700.

Sathiyabama, M., Akila, G and Charles, R. E. (2014). Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Archives of Phytopathology and Plant Protection, 47:1963-1973.

Sharma, K., Guleria, S., Razdan, V. K. and Babu, V. (2020). Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Industrial Crops and Products, 154(112569.

Silva, M. S. B. d. S., Rodrigues, A. A. C., Oliveira, A. C. S. d., Silva, E. K. C., Dias, L. R. C. and Costa, N. d. J. F. (2023). Plant extracts in the control of plant pathogens seeds and fusariosis in okra. Revista Ceres, 70:124-131.

Singh, S., Dey, S., Bhatia, R., Batley, J. and Kumar, R. (2018). Molecular breeding for resistance to black rot Xanthomonas campestris pv. campestris (Pammel) Dowson in Brassicas: recent advances. Euphytica, 214:1-17.

Tran, T. H., Le, H. T., Nguyen, H. M. , Tran, T. H., Do Thi, T., Nguyen, X. C. and Ha, M. T. (2021). Garcinoxanthones SV, new xanthone derivatives from the pericarps of Garcinia mangostana together with their cytotoxic and antioxidant activities. Fitoterapia, 151: 104880.

Verlee, A., Mincke, S. and Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 164:268-283.

Wang, L., Wu, H., Qin, G. and Meng, X. (2014). Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit. Food Control, 41:56-62.

Wang, M., Thomas, N. and Jin, H. (2017). Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre-and post-harvest plant protection. Current Opinion in Plant Biology, 38:133-141.

Widyarman, A. S., Lay, S. H., Wendhita, I. P., Tjakra, E. E., Murdono, F. I. and Binartha, C. T. O. (2019). Indonesian mangosteen fruit (Garcinia mangostana L.) peel extract inhibits streptococcus mutans and porphyromonas gingivalis in Biofilms In vitro. Contemp Clin Dent, 10:123-128.

Yodsenee, K., Showpanish, K., Sonhom, N., Pilasombut, K., Prachom, N., Sathitkowitchai, W., Buathong, R. and Rumjuankiat, K. (2020). Encapsulation of Pediococcus pentosaceus RSU-Nh1 into pectin-sodium alginate and chitosan coating. Technology, 16:207-222.