Detection of blast resistance genes in inbred rice lines using site-specific blast races

Main Article Content

Herawati, R.
Bustamam, H.
Fahrurrozi
Alnopri
Ganefianti, D. W.
Marlin
Romeida, A.

Abstract

Blast disease attacks by Pricularia oryzae on lowland rice were quite extensive in the Province of Bengkulu, Indonesia. Screening of 19 lines inoculated with four local races (333-BT, 001-BU, 043-RM, and 373-BS) revealed variations in blast disease resistance. There were nine rice lines (G7, G8, G9, G11, G13, G14, G15, G18, and G19) that showed resistance to blast disease with lower severity. There are found the race-sensitive lines with high virulence (333-BT and 373-BS), namely G3, G4, G6, G12, and G17. In addition, races 333-BT and 373-BS tended to show high virulence in sensitive varieties of Kencana Bali. Almost all lines had low levels of severity in low-virulence races (001-BU and 043 RM). Detection of blast-resistant genes using specific primers is found to be detected the existence of the genes Pib, Pii, Pi5, and Pita2. This study found that the G7, G8, G9, G11, G13, G14, G15, G18, and G19 lines are shown to be the potential for further evaluation because they contain the Pii, Pi5, and Pita2 genes, which have multigenic and broad-spectrum blast resistance

Article Details

How to Cite
Herawati, R., Bustamam, H., Fahrurrozi, Alnopri, Ganefianti, D. W., Marlin, & Romeida, A. (2024). Detection of blast resistance genes in inbred rice lines using site-specific blast races . International Journal of Agricultural Technology, 20(6), 2299–2314. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/5593
Section
Original Study

References

Amir, M., Nasution, A. and Santoso. (2000). Inventory of Pyricularia oryzae races in Sukabumi area, West Java, growing season 1995-1998. Prosiding Nasional XV dan Seminar Ilmiah PFI 16-18 September 1999. UNSOED. Purwokerto.

Bryan, G. T., Wu, K. S., Farrall, L., Jia, Y., Hershey, H. P., McAdams, S. A., Faulk, K. N., Donaldson, G. K., Tarchini, R. and Valent, B. (2000). A single amino acid difference distinguishes resistant and susceptible alleles of the rice blas resistance gene Pi-Ta. The Plant Cell, 12:2033-45.

Chen, X., Shang, J., Chen, D., Lei, C., Zhou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma, B., Wang, Y., Zhao, X., Li, S. and Zhu, L. (2006). A B-lectin receptor kinase gene conferring rice blas resistance. The Plant Journal, 46:794-804.

He, N., Huang, F., Yu, M., Zhu, Y., Li Q. Q. and Yang, D. (2022). Analysis of a rice blast resistance gene pita-fuhui2663 and development of selection marker. Scientific Reports, 12:1-10.

Herawati, R., Inoriah, E., Rustikawati. and Mukhtasar. (2017). Genetics diversity and agronomic characters of F3 lines selected by recurrent selection for drought tolerance and blast resistance of Bengkulu local rice varieties. International Journal on Advanced Science, Engineering and Information Technology, 7:922-27.

Herawati, R., Herlinda, S., Ganefianti, D.W., Bustamam, H. and Sipriyadi. (2022). Improving broad spectrum blast resistance by introduction of the Pita2 gene: encoding the NB-ARC domain of blast-resistant proteins into upland rice breeding programs. Agronomy, 12: 2373.

Herawati, R., Lestari, A. P., Ganefianti, D. W. and Romeida, A. (2021). Comparative study on the stability and adaptability of different models to develop a high-yield inbred line from landrace rice varieties. Annals of Agricultural Sciences, 66:184-92.

Heuer, S., Lu, X., Chin, J. H., Tanaka, J. P., Kanamon, H., Matsumoto, T., Leon, T. D., Ulat, V. J., Ismail, A. M., Yano, M. and Wissuwa, M. (2009). Comparative sequence analyses of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure. Plant Biotechnology Journal, 7:456-71.

International Rice Research Institute. (2013). Standard evaluation system for rice. The International Rice Testing Program (IRTP) IRRI Los Banos, Philippines. Retrieved (http://www.clrri.org/ver2/uploads/SES_5th_edition.pdf).

Jiang, H., Li, Z., Liu, J., Shen, Z., Gao, G., Zhang, Q. and He, Y. (2019). Development and evaluation of improved lines with broad-spectrum resistance to rice blast using nine resistance genes. Rice, 12:1.

Khairullah, I., Saleh, M. and Mawardi. (2021). The Characteristics of Local Rice Varieties of Tidal Swampland in South Kalimantan. IOP Conference Series: Earth and Environmental Science, 762:1. doi: 10.1088/1755-1315/762/1/012009.

Kurrata, G., Kuswinanti, T. and Nasruddin, A. (2021). Keparahan penyakit blas Pyricularia oryzae dan analisis gen virulensi menggunakan metode sequence characterized amplified region. Jurnal Fitopatologi Indonesia, 17:19-27.

Li, W., Deng, Y., Ning Y., He, Z. and Wang, G. L. (2020). Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annual Review of Plant Biology, 71:575-603.

Lin, F., Chen, S., Que, Z., Wang, L., Liu, X. and Pan, Q. (2007). The blas resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 177:1871-80.

Liu, T., Wan, A., Liu, D. and Chen, X. (2017). Changes of races and virulence genes in Puccinia striiformis f. Sp. Tritici, the wheat stripe rust pathogen, in the United States from 1968 to 2009. Plant Disease, 101:1522-32.

Longya, A., Talumphai, S. and Jantasuriyarat, C. (2020). Morphological characterization and genetic diversity of rice blast fungus, Pyricularia oryzae, from Thailand using ISSR and SRAP Markers. Journal of Fungi, 6:1.

Maruta, N., Burdett, H., Lim, B. Y. J., Hu, X., Desa, S., Manik, M. K. and Kobe, B. (2022). Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics, 74:5-26.

Meng, X., Xiao, G., Telebanco-Yanoria, M. J., Siazon, P. M., Padilla, J., Opulencia, R., Bigirimana, J., Habarugira, G., Wu, J., Li, M., Wang, B., Lu, G. D. and Zhou, B. (2020). The Broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita. Rice, 13:1.

Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W. and Young, N. D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant Journal. 20:317-32.

Mulyaningsih, E. S., Perdani, A. Y., Indrayani, S. and Suwarno (2016). Seleksi fenotipe populasi padi gogo untuk hasil tinggi, toleran alumunium dan tahan blas di tanah masam. Jurnal Penelitian Pertanian Tanaman Pangan, 35:191.

Mutiga, S. K., Rotich, F., Were, V. M., Kimani, J. M., Mwongera, D. T., Mgonja, E., Onaga, G., Konate, K., Razanaboahirana, C., Bigirimana, J., Ndayiragije, A., Gichuhi, E., Yanoria, M. J., Otipa, M., Wasilwa, L., Ouedraogo, I., Mitchell, T., Wang, G. L., Correll, J. C. and Talbot, N. J. (2021). Integrated strategies for durable rice blast resistance in Sub-Saharan Africa. Plant Disease, 105:1-22.

Nickolas, H., Jayalekshmy, V. G., Yamini Varma, C. K. and Vighneswaran, V. (2018). Molecular and field level screening for blast resistance gene donors among traditional rice varieties of Kerala. Journal of Tropical Agriculture, 56:93-98.

Nimchuk, Z., Eulgem, T., Holt, B. F. and Dangl, J. L. (2003). Recognition and response in the plant immune system. Annual Review of Genetics, 37:579-609.

Ning, X., Yunyu, W. and Aihong, L. (2020). Strategy for use of rice blast resistance genes in rice molecular breeding. Rice Science, 27:263-77.

Orasen, G., Stile, M. R., Greco, R., Puja, E. and Pozzi, C. (2020). Blast resistance R genes pyramiding in temperate japonica rice. Euphytica, 216:40.

Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., et al. (2006). The Broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 172:1901-1914.

Ramkumar, G., Prahalada, G. D., Hechanova, S. L., Vinarao, R. and Jena, K. K. (2015). Development and validation of SNP-based functional codominant markers for two major disease resistance genes in rice (O. Sativa L.). Molecular Breeding, 35:129.

Seong, K., Seo, E., Witek, K., Li, M. and Staskawicz, B. (2020). Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. New Phytologist, 227:1530-43.

Sheoran, N., Ganesan, P., Mughal, N. M., Yadav, I. S. and Kumar, A. (2021). Genome assisted molecular typing and pathotyping of rice blast pathogen, Magnaporthe oryzae, reveals a genetically homogenous population with high virulence diversity. Fungal Biology, 125:733-47.

Sitaresmi, T., Wening, R. H., Rakhmi, A. T., Yunani, N. and Susanto, U. (2013). Pemanfaatan plasma nutfah padi varietas lokal dalam perakitan varietas unggul. Iptek Tanaan Pangan, 8:22-30.

Su, J., Wang, W. J., Han, J. L., Chen, S., Wang, C. Y., Zeng, L. X., et al. (2015). Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9locus. Theoretical and Applied Genetics, 128:2213-2225.

Sudir., Nasution, A. and Nuryanto, B. (2014). Penyakit blas Pyricularia grisea pada tanaman padi dan strategi pengendaliannya. IPTEK Tanaman Pangan, 9:85-96.

Takken., Frank, L. W., Albrecht, M. and Tameling, W. I. L. (2006). Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology, 9:383-90.

Utami, D. W., Amir, M. and Moeljopawiro, S. (2000). Analisis RFLP kelompok ras dan haplotipe isolat blas dengan DNA pelacak MGR 586. Jurnal Bioteknologi Pertanian, 5:28-23.

Vasudevan, K., Gruissem, W. and Bhullar, N. K. (2015). Identification of novel alleles of the rice blast resistance gene Pi54. Scientific Reports, 5:1-12.

Wang, G. L. and Valent, B. (2017). Durable resistance to rice blast. Science, 355:906-7.

Wang, Y., Tang, S., Guo, N., An, R., Ren, Z., Hu, S., Wei, X., Jiao, G., Xie, L., Wang, L., Chen, Y., Zhao, F., Tang, S., Hu, P. and Sheng, Z. (2023). Pyramiding rice blast resistance gene Pi2 and fragrance gene Badh2. Agronomy, 13:1-14.

Xiao, N., Wu, Y., Pan, C., Yu, L., Chen, Y., Liu, G., Li, Y., Zhang, X., Wang, Z., Dai, Z., Liang, C. and Li, A. (2017). Improving of rice blast resistances in japonica by pyramiding major R genes. Frontiers in Plant Science, 7:1-10.

Xiao, W. M., Yang, Q. Y., Sun, D. Y., Wang, H., Guo, T., Liu, Y. Z., Zhu, X. Y. and Chen, Z. Q. (2015). Identification of three major R genes responsible for broadspectrum blast resistance in an indica rice accession. Molecular Breeding, 35:49.

Xiao, W., Luo, L. X., Wang, H., Guo, T., Liu, Y. Z., Zhou, J. Y., Zhu, X. Y., Yang, Q. Y. and Chen, Z. Q. (2016). Pyramiding of Pi46 and Pita to improve blast resistance and to evaluate the resistance effect of the two R genes. Journal of Integrative Agriculture, 15:2290-98.

Xu, X., Hayashi, N., Wang, C.T., Fukuoka, S., Kawasaki, S., Takatsuji, H. and Jiang, C. J. (2014). Rice blast resistance gene pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Molecular Breeding, 34:691-700.

Xu, X., Tang, X., Han, H., Yang, W., Liu, X., Li, K., Tan, Y., Qin, Y., Liu, X. and Wang, C. (2021). Pathogenicity, mating type distribution and avirulence gene mutation of Magnaporthe oryzae populations in the wuling mountain region of China. Physiological and Molecular Plant Pathology, 116:101716.

Yadav, M. K., Aravindan, S., Ngangkham, U., Raghu, S., Prabhukarthikeyan, S. R., Keerthana, U., et al. (2019). Blast resistance in indian rice landraces: genetic dissection by gene specific markers. PLoS ONE, 14:e0211061.

Yan, L., Bai-Yuan, Y., Yun-Liang, P., et al. (2017). Molecular screening of blast resistance genes in rice germplasms resistant to Magnaporthe oryzae. Rice Science, 24:41-47.

Zheng, W., Wang, Y., Wang, L., Ma, Z., Zhao, J., Wang, P., et al. (2016). Genetic mapping and molecular marker development for Pi65(t), a novel broad–spectrum resistance gene to rice blast using next–generation sequencing. Theoretical and Applied Genetics, 129:1035-1044.

Zhu, D., Kang, H., Li, Z., Liu, M., Zhu, X., Wang, Y., et al. (2016). A Genome–wide association study of field resistance to Magnaporthe oryzae in rice. Rice 9:44.