Screening fungicides and antagonistic microorganisms for control fruit spot of Citrus maxima (Burm.) Merr. cv. Tup Tim Siam pomelo

Main Article Content

Seephueak, P.
Liamnimitr, N.
Preecha, C.

Abstract

The screening of fungicides and antagonistic microorganisms for their ability to control fruit spot disease caused by Fusarium oxysporum of Citrus maxima (Burm.) Merr. cv. Tup Tim Siam pomelo. The results showed that prochloraz (0.19 mg/ml), thiabendazole (0.60 mg/ml) and thiophanate-methyl (1.05 mg/ml) inhibited mycelial growth 100% and followed with propiconazole (0.25 mg/ml) and fluopyram (0.12 mg/ml) + trifloxstrobin (0.12 mg/ml) inhibited mycelial growth of 85.33 and 83.33%, respectively. The optimal doses to control the causal agent, Fusarium oxysporum was prochloraz, thiabendazole and thiophanate-ethyl which were 0.5 mg/ml for 100% mycelial growth inhibition as same as propiconazole at the rate of 1 mg/ml. Moreover, three species of antagonistic microorganisms, Paenibacillus pabuli SW01/4, Trichoderma harzianum and Bacillus amyloliquefaciens KPS46 showed inhibition of mycelial growth of Fusarium oxysporum in vitro using poisoned food technique, with inhibition rates of 52.00, 37.44 and 36.00%, respectively.

Article Details

How to Cite
Seephueak, P., Liamnimitr, N., & Preecha, C. (2024). Screening fungicides and antagonistic microorganisms for control fruit spot of Citrus maxima (Burm.) Merr. cv. Tup Tim Siam pomelo. International Journal of Agricultural Technology, 20(6), 2541–2550. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/5620
Section
Original Study

References

Amby, D. B., Thuy, T. T. T., Ho, B. D., Kosawang, C., Son, T. B. and Jørgensen, H. J. L. (2015). First report of Fusarium lichenicola as a causal agent of fruit rot in pomelo (Citrus maxima). Plant Disease, 99:1278-1279.

Antoun, H. and Prevost, D. (2006). Ecology of plant growth promoting rhizobacteria. In PGPR: Biocontrol and Biofertilization. Siddiqui, Z.A. Springer, Dordrecht.

Back, M. A., Haydock, P. P. J. and Jenkinson, P. (2002). Nematodes and soilborne pathogens disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology, 51:683-697.

Bergeson, G. B., Van Gundy, S. D. and Thomason, I. J. (1970). Effect of Meloidogyne javanica on rhizosphere microflora and Fusarium wilt of tomato. Phytopathogy, 60:1245-1249.

Castillo, P., Mora-Rodriguez, M. P., Navas-Cortes, J. A. and Jimenez-Diaz, R. M. (1998). Interactions of Pratylenchus thornei and Fusarium oxysporum f.sp. ciceri on chickpea. Phytopathology, 88:828-836.

Charoenporn, C., Kanokmedhalul, S., Lin, F. C., Poeaim, S. and Soytong, K. (2010). Evaluation of bio-agent formulations to control Fusarium wilt to tomato. African Journal of Biotechnology, 9:5836-5844.

Chuku, E. C., Osakwe, J. A. and Daddy-West, C. (2010). Fungal spoilage of tomato (Lycopersicon esculentum mill) using garlic and ginger. Scientific African, 9:41-46.

Etebu, E., Nwauzoma, A. B. and Bawo, D. D. S. (2013). Postharvest spoilage of tomato (Lycopersicon esculentum Mill.) and control strategies in Nigeria. Journal of Biology Agriculture and Healthcare, 3:51-58.

González-Estrada, R., Blancas-Benítez, F. M., Velázquez-Estrada, R., Montaño-Leyva, B., Ramos-Guerrero, A., Aguirre-Güitrón, L., Moreno-Hernández, C., Coronado-Partida, L., Herrera-González, J. A., Rodríguez-Guzmán, C. A., et al. (2020). Alternative eco-friendly methods in the control of post-harvest decay of tropical and subtropical fruits. In Modern Fruit Industry, IntechOpen: London, UK. Retrieved from http://doi: 10.5772/intechopen.85682

Hanks, G. R. (1996). Control of Fusarium oxysporum f.sp. narcissi, the cause of narcissus basal rot, with thiabendazole and other fungicides. Crop Protection, 15:549-558.

Hanson, L. E., Schwager, S. J. and Loria. R. (1996). Sensitivity to thiabendazole in Fusarium species associated with dry rot of potato. Phytopathology, 86:378-384.

Hyun, J. W., Lee, S. C., Kim, D. H., Ko, S. W. and Kim, K. S. (2000). Fusarium fruit rot of citrus in Jeju Island. Mycobiology, 28:158-162.

Jorgenson, E. C. (1970). Antagonistic interaction of Heterodera schachtii (Schmidt) and Fusarium oxysporum (Woll.) on sugar beet. Journal of Nematology, 2:393-398.

Kim, J. W. and Kim, H. J. (2004). Fusarium fruit rot of postharvest oriental melon (Cucumis melo L. var. makuwa Mak) caused by Fusarium spp. Research in Plant Disease, 10:260-267.

Lamichhane, J. R. and Venturi, V. (2015). Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science, 6:1-12.

Machado, F. J., Santana, F. M., Lau, D. and Del Ponte, E. M. (2017). Quantitative review of the effects of triazole and benzimidazole fungicides on Fusarium head blight and wheat yield in Brazil. Plant Disease, 101:1366-1641.

Ocamb, C. M., Hamm, P. B and Johnson, D. A. (2007). Benzimidazole resistance of Fusarium species recovered from potatoes with dry rot from storages located in the Columbia basin of Oregon and Washington. American Journal of Potato Research, 84:169-177.

Okey, E., NAkwaji, P. I., Akpan, J. B., Johnson, E., Umana, B. and Akpan, G. (2016). In vitro control of tomato (Solanum lycopersicon L.) fruit rot caused by fungi using two plant extract. International Letters of Natural Sciences, 52:19-21.

Platt, H. W. (1997). Resistance to thiabendazole in Fusarium species and Helminthosporium solani in potato tubers treated commercially in eastern Canada. Phytoprotection, 78:1-10.

Preecha, C., Wisutthiphaet, W. and Seephueak, P. (2018). Occurrence of canker caused by Xanthomonas axonopodis pv. citri on pummelo (Citrus maxima (Burm.) Merr.) cultivar. Tabtim siam in Nakhon Si Thammarat Province, Thailand and screening fungicides, antibiotics and antagonistic bacteria against X. a. pv. citri in vitro. Journal of Geoscience and Environment Protection, 6:1-7.

Schiffmann-Nadel, M., Chalutz, E., Waks, J., Lomaniec, E. and Yoffe, A. Z. (1987). Increase of Fusarium rot in stored citrus fruit. Phytopathology, 120:154-157.

Singh, A. K., Ghodke, I. and Chatpar, H. S. (2009). Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. Journal Environmental Management, 91:358-362.

Triest, D. and Hendrick, M. (2016). Postharvest disease of banana caused by Fusarium musae. PLOS Pathogens, Retrieved from http://doi:10.1371/journal.ppat1-5

Trinh, C. S., Jeong, C. Y., Lee, W. J., Truong, H. A., Chung, N., Han, J., Hong, S.W. and Lee, H. (2018). Paenibacillus pabuli strain P7S promotes plant growth and induces anthocyanin accumulation in Arabidopsis thaliana. Plant Physiology and Biochemistry, 129:264-272.

Uma Maheswari, T., Sharma, S. B., Reddy, D. D. R. and Haware, M. P. (1997). Interaction of Fusarium oxysporum f.sp. ciceri and Meloidogyne javanica on Cicer arietinum. Journal of Nematology, 29:117-126.

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. and Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability - a review. Molecules, 21: 573. Retrieved from https://doi:10.3390/molecules21050573

Wanjohi, W. J., Wafula, G. O. and Macharia, C. M. (2018). Integrated management of Fusarium wilt-root knot nematode complex on tomato in central highlands of Kenya. Subtainable Agriculture Research, 7:8-18.

Yadav, D. R., Adhikari, M., Kim, S. W., Kim, H. S. and Lee, Y. S. (2021). Suppression of Fusarium wilt caused by Fusarium oxysporum f. sp. lactucae and growth promotion on lettuce using bacterial isolates. Journal of Microbiology Biotechnology, 31:1241-1255. Retrieved from http://doi: 10.4014/jmb.2104.04026

Yeemayee, M. and Dolor, Y. (2021). Study of Latent Infection which Cause Postharvest Disease of Citrus maxima Tup Tim Siam (Burm.) cv. Pomelo and Control. Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat.

Zakaria, L. (2023). Fusarium species associated with disease of major tropical fruit crops. Horticulturae, 9:322. Retrieved from https://doi.org/10.3390/horticulturae9030322

Zakaria, L., Chik, M. W., Heng K. W. and Salleh, B. (2012). Fusarium species associated with fruit rot of banana (Musa spp.), papaya (Carica papaya) and guava (Psidium guajava). Malaysian Journal of Microbiology, 8:127-130.