Exploring different imaging techniques for non-invasive monitoring of insect population: A review article

Main Article Content

Najib, M. A.
Rashid, A. M. S.
Ishak, A.
Ramle, M.
Izhal, A. H.

Abstract

An accurate technique of monitoring insect pest populations is very crucial in crop protection. Traditionally, this is achieved by manual detection of infested area and manual counting of the target species. However, it is a time-consuming task that might be useless if the target species has migrated after the resultant manual counting. Thus, this paper attempted to explore and discuss the imaging systems developed in recent years for monitoring, detecting, and counting insect pest populations in various infested areas, and the advancements made around the world. The developed systems were structured into standalone systems, network-based imaging systems, and Red, Green and Blue (RGB) vision and thermographic imaging. Recent trends show that standalone and networked imaging systems are the most prominent technologies in insect detection and counting for industry adoption. Standalone and networking imaging technologies each possess distinct characteristics and can be employed to monitor insect pest populations according to the user's needs and preferences. In all these systems, robustness of the camera setup is critical because it dictates the accuracy of detection for a particular target species. From both research and commercialization standpoints, there is needed for further exploration of imaging technology in insect pest detection and counting. The aim is to streamline traditional labor-intensive and costly methods

Article Details

How to Cite
Najib, M. A., Rashid, A. M. S., Ishak, A., Ramle, M., & Izhal, A. H. (2024). Exploring different imaging techniques for non-invasive monitoring of insect population: A review article . International Journal of Agricultural Technology, 20(5), 1979–2014. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/5682
Section
Original Study

References

Aakif, A. and Faisal, M. (2015). Automatic classification of plants based on their leaves. Biosystems Engineering, 139:66-75.

Anwar, Z. and Masood, S. (2023). Exploring deep ensemble model for insect and pest detection from images. Procedia Computer Science, 218:2328-2337.

Balla, E., Flo´ri´an, N., Gergo´cs, V., Gra´nicz, L., To´th, F., Ne´meth, T. and Dombos, M. (2020). An opto-electronic sensor-ring to detect arthropods of significantly different body sizes. Sensors, 20:982.

Bannerjee, G., Sarkar, U., Das, S. and Ghosh, I. (2018). Inteligencia artificial en la agricultura: un estudio de la literatura. Revista Internacional de Investigación Científica en Aplicaciones de Ciencias de la Computación y Estudios de Gestión, 7:1-6.

Barbedo, J. G. A. (2020). Detecting and classifying pests in crops using proximal images and machine learning: A Review. AI, 1:312-328.

Bender, S. F. A., Rodacy, P. J., Schmitt, R. L., Hargis, P. J., Johnson, M. S., Klarkowski, J. R., Magee, G. I. and Bender, G. L. (2003). Tracking honeybees using LIDAR Ilight detection and ranging) technology. Sandia Report SAND2003-0184, Sandia national Laboratory, Albuquerque, United States, 87185p. 10.2172/808625.

Bokhari, U. G. and Abu Zuhira, R. (1992). Diagnostic tests for red palm weevil, Rhynchophorus ferrugineus infested date palm trees. Arab Gulf Journal of Scientific Research, 10:93-104.

Brydegaard, M., Gebru, A. and Svanberg, S. (2014). Super resolution laser radar with blinking atmospheric particles––Application to interacting flying insects. Progress In Electromagnetics Research, 147:141-151.

Brydegaard, M., Jansson, S., Malmqvist, E., Mlacha, Y. P., Gebru, A., Okumu, F., Killeen, G. F. and Kirkeby, C. (2020). Lidar reveals activity anomaly of malaria vectors during pan-African eclipse. Science Advances, 6:eaay5487. https://doi.org/10.1126/sciadv.aay5487.

Brydegaard, M., Larsson, J., T¨or¨ok, S., Malmqvist, E., Zhao, G., Jansson, S., Andersson, M., Svanberg, S., Åkesson, S., Laurell, F., Bood, J., Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M. P., Senff, C., Veselovskii, I. and Wandinger, U. (2018). Short-Wave infrared atmospheric scheimpflug lidar. EPJ Web of Conferences, United States, 176p.

Brydegaard, M., Malmqvist, E., Jansson, S., Larsson, J., T¨or¨ok, S. and Zhao, G. (2017). Proceedings of the The scheimpflug lidar method. lidar remote sensing for environmental monitoring, Proc.SPIE, San Diego, United States, 10406p.

Chaki, J., Parekh, J. and Bhattacharya, S. (2020). Plant leaf classification using multiple descriptors: A hierarchical approach. Journal of King Saud University - Computer and Information Sciences. 32:1158-72.

Chelladurai, V., Kaliramesh, S. J. and Digvir, S. J. (2012). Detection of Callosobruchus Maculatus (F.) Infestation in Mung Bean (Vigna radiata) using Thermal Imaging Technique. NABEC/CSBE, 12:121p.

Chen, Y., Why, A., Batista, G., Mafra-Neto, A. and Keogh, E. (2014a). Flying insect classification with inexpensive sensors. Journal of Insect Behavior, 27:657-677.

Chen, Y., Why, A., Batista, G., Mafra-Neto, A. and Keogh, E. (2014b). Flying insect detection and classification with inexpensive sensors. Journal of Visualized Experiments, 92: e52111.

Corley, R. H. V. and Tinker, P. B. H. (2003). Chapter 12: Disease and pest of the oil palm. The Oil Palm. Fourth Edition. The Bath Press, Bath, Great Britain, Blackwell Science Ltd., 559 p.

El-Faki, M. S., El-Shafie, H. A. F. and Al-Hajhoj, M. B. R. (2016). Potentials for early detection of red palm weevil (coleoptera: Curculionidae)-infested date palm (arecaceae) using temperature differentials. Canadian Entomologist, 148:239-245.

Eli-Chukwu, N. C. (2019). Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research, 9:4377-83.

FLIR System (2016). Thermographic measurement techniques. User’s Manual FLIR Tools/Tools+. USA, FLIR, 112p.

Gallego, B., Verdu, J. R., Carrascal, L. M. and Lobo, J. M. (2017). Thermal tolerance and recovery behaviour of Thorectes lusitanicus (Coleoptera, Geotrupidae). Ecological Entomology, DOI: 10.1111/een.12447.

Gomes, J. C. and Borges, D. L. (2022). Insect pest image recognition: A few-shot machine learning approach including maturity stages classification. Agronomy 2022, 12, 1733. https://doi.org/10.3390/agronomy12081733.

Horaisová, K. and Kukal, J. (2016). Leaf classification from binary image via artificial intelligence. Biosystems Engineering, 142:83-100.

Huddar, S. R., Gowri, S., Keerthana, K., Vasanthi, S. and Rupanagudi, S. R. (2012). Novel algorithm for segmentation and automatic identification of pests on plants using image processing. The Third International Conference on Computing, Communication and Networking Technologies (ICCCNT 12). Coimbatore, India, 68p.

Huijser, M. P., Camel, W. and Hardy, A. (2005). Reliability of the animal detection system along US Hwy 191 in Yellowstone National Park, Montana, USA. In: Proceedings of the Int. Conf. on Ecology and Transportation. (CEOT). USA, pp.509-523. https://escholarship.org/uc/item/6cg9f98f.

Jian, J. A., Tseng, C. L., Lu, F. M., Yang, E. C., Wu, Z. S., Chen, C. P. and Lin, S. H. (2008). A GSM-based remote wireless automatic monitoring system for field information: A case study for ecological monitoring of the oriental fruit fly, Bactrocera dorsalis (Hendel). Computers and Electronics in Agriculture, 62: 243-259.

Jiao, L., Chen, M., Wang, X., Du, X. and Dong, D. (2018). Monitoring the number and size of pests based on modulated infrared beam sensing technology. Precision Agriculture, 19: 1100-1112.

Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S., Navajas, A. D. and Ortiz-Barredo, A. (2017). Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Computers and Electronics in Agriculture, 138: 200-209.

Kasinathan, T., Singaraju, D. and Uyyala, S. R. (2020). Insect classification and detection in field crops using modern machine learning techniques, Information Processing in Agriculture 8:446-457.

Kouakou, B. K., Jansson, S., Brydegaard, M. and Zoueu, J. T. (2020). Entomological Scheimpflug lidar for estimating unique insect classes in-situ field test from Ivory Coast. OSA Continuum, 3:2362-2371.

Larios, N., Soran, B., Shapiro, L. G., Martínez-Mu˜noz, G., Lin, J. and Dietterich, T. G. (2010). Haar random forest features and SVM spatial matching kernel for stonefly species identification, in: 2010 20th International Conference on Pattern Recognition, IEEE, pp. 2624-2627.

Lello, F., Dida, M., Mkiraweni, M., Matiko, J., Akol, R., Nsabagwa, M. and Katumba, A. (2023). Fruit fly automatic detection and monitoring technology: A review. Smart Agricultural Technology, 5:100294.

Lillesand, T., Kiefer, R. W. and Chipman, J. (2015). Remote sensing and image interpretation. NJ, USA, John Wiley & Sons, 770p.

Lin, K. C., Wu, Z. S., Liao, J. S., Lin, S. H., Chen, J. P., Tseng, C. L., Lu, F. M. and Jiang, J. A. (2006). Design and implementation of the automatic trap for oriental fruit fly. In: Proceedings of the 3rd International Symposium on Machinery and Mechatronics for Agriculture and Bio-systems Engineering (ISMAB2006) (CD), Seoul, Korea, 213p.

Najib, M. A., Rashid, A. M. S. and Ramle, M. (2018b). Monitoring insect pest infestation via different spectroscopic techniques. Applied Spectroscopy Reviews, 53:836-853.

Najib, M. A., Rashid, A. M. S., Ishak, A. and Izhal, A. H. (2021a). A four stage image processing algorithm for detecting and counting of the bagworms, Metisa plana Walker (Lepidoptera: Psychidae). Agriculture, 11:1265.

Najib, M. A., Rashid, A. M. S., Ishak, A., Izhal, A. H. and Ramle, M. (2018a). Development of an automated detection and counting system for the bagworms, Metisa plana Walker (Lepidoptera: Psychidae), census. In Proceedings of the 19th International Oil Palm Conference 2018: Nurturing People and Protecting the Planet. Cartagena, Colombia, 155p.

Najib, M. A., Rashid, A. M. S., Ishak, A., Izhal, A. H. and Ramle, M. (2021b). Ground based thermographic screening of bagworm (Metisa plana Walker) infestation in oil palm and identification of their growth stages. Indian Journal of Experimental Biology, 59:804-813.

Otoniel, L., Miguel, M. R., Hector, M., Manuel, P. M., Alberto, B. and Juan, J. S. (2012). Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies. Sensors, 12:15801.

Palmer, M. C., Siebke, K. and Yeates, D. K. (2004). Infrared Video Thermography: a technique for assessing cold adaptation in insects. Biotechniques, 37:212-217.

Patil, R. and Kumar, S. (2020). Bibliometric Survey on Diagnosis of Plant Leaf Diseases Using Artificial Intelligence. International Journal of Modern Agriculture, 9:1111-31.

Preti, M., Verheggen, F. and Angeli, S. (2021). Insect pest monitoring with camera-equipped traps: strengths and limitations. Journal of Pest Science, 94:203-217.

Priya, C. T., Praveen, K. and Srividya, A. Monitoring of Insect Traps using Image Sensors & Dspic. International Journal of Engineering Trends and Technology, 9:4088-4093.

Qing, Y., Xiang, X. D., Jie, L. Q., Jun, Y. B., Qiang, D. G. and Jian, T. (2014). Automated Counting of Rice Planthoppers in Paddy Fields Based on Image Processing. Journal of Integrative Agriculture, 13:1736-1745.

Ramalingam, B., Mohan, R. E., Pookkuttath, S., G´omez, B. F., Sairam Borusu, C. S. C., Wee Teng, T. and Tamilselvam, Y. K. (2020). Remote insects trap monitoring system using deep learning framework and IoT. Sensors, 20:5280.

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016). You only look once: unified, real time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.779-788.

Ren, S., He, K., Girshick, R. and Sun, J. (2015). Faster R C-NN: Towards Real-Time Object Detection with Region Proposal Networks. In: Advances in Neural Information Processing System. 24th International Conference, ICONIP 2017, Guangzhou, China, 249p.

Rigakis, I., Potamitis, I., Tatlas, N. A., Livadaras, I. and Ntalampiras, S. A. (2019). A multispectral backscattered light recorder of insects’ wingbeats. Electronics, 8:277.

Tavakoli, H., Alirezazadeh, P., Hedayatipour, A., Banijamali, N. and Landwehr, A. H. (2021). Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks. Computers and Electronics in Agriculture, 181:105935.

Travis, E., Qamar, Z., Dominic, G., Aitazaz, F., Arnold, S. and Young, C. (2018). Machine vision smart sprayer for spot-application of agrochemical in wild blueberry fields. Precision Agriculture, DOI: 10.1007/s11119-017-9557-y.

Tzutalin (2015). LabelImg.git code. https://github.com/tzutalin/labelImg, (Accessed 30 November 2022).

Wang, B., Gao, Y., Yuan, X., Xiong, S. and Feng, X. (2020). From species to cultivar: Soybean cultivar recognition using joint leaf image patterns by multiscale sliding chord matching. Biosystems Engineering, 194:99-111.

Wang, J., Lin, C., Ji, L. and Liang, A. (2012). A new automatic identification system of insect images at the order level. Knowledge-based Systems, 33:102-110.

Wang, Y., Zhao, C., Dang, D. and Wang, K. (2023). Real-time monitoring of insects based on laser remote sensing. Ecological Indicators, 151:110302.

Yigit, E., Sabanci, K., Toktas, A. and Kayabasi, A. (2019). A study on visual features of leaves in plant identification using artificial intelligence techniques. Computers and Electronics in Agriculture, 156:369-77.

Zhong, Y., Gao, J., Lei, Q. and Zhou, Y. (2018). A vision-based counting and recognition system for flying insects in intelligent agriculture. Sensors, 18:1489.