Yield enhancement efficacy of Bacillus velezensis CE 100 biofertilizer on Pineapple (Ananas comosus L. Merr.) producion in Prachuap Khiri Khan, Thailand

Main Article Content

Duangkaew, P.
Kim, K. Y.
Monkhung, S.

Abstract

Biofertilizers are the best choice to promote organic and sustainable agriculture by enhancing productivity and reducing chemical fertilizer use. The results showed that T4 bacterial pure culture significantly improved plant height (96.83±0.50 cm) and D-leaf length (84.06±1.55cm) at the third month of application (P < 0.05). In addition, T4 significantly enhanced fruit weight (1.12±0.07 kg/fruit) and fruit yield (66.3 t/ha) compared to other treatments (P < 0.05). However, the fruit characteristics including fruit lengths, perimeters, citric acid contents, and total soluble solids (TSS) of pineapple fruits were not significantly differed. Therefore, these findings indicated the efficacy of B. velezensis as a biofertilizer is  enhanced pineapple productivity.

Article Details

How to Cite
Duangkaew, P., Kim, K. Y., & Monkhung, S. (2025). Yield enhancement efficacy of Bacillus velezensis CE 100 biofertilizer on Pineapple (Ananas comosus L. Merr.) producion in Prachuap Khiri Khan, Thailand. International Journal of Agricultural Technology, 21(4), 1261–1276. https://doi.org/10.63369/ijat.2025.21.4.1261-1276
Section
Original Study

References

Abraham, R. A., Joshi, J. T. and Abdullah, S. (2023). A comprehensive review of pineapple processing and its by-product valorization in India. Food Chemistry Advances, 3:100416. DOI: https://doi.org/10.1016/j.focha.2023.100416

Adesemoye, A. O., Torbert, H. A. and Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58:921-929. DOI: https://doi.org/10.1007/s00248-009-9531-y

Ali, M. M., Hashim, N., Abd Aziz, S. and Lasekan, O. (2020). Pineapple (Ananas comosus): a comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Research International, 137:109675. DOI: https://doi.org/10.1016/j.foodres.2020.109675

AOAC (1990). Official Methods of Analysis. 15th Edition, Association of Official Analytical Chemist, Washington DC.

Bakker, P. A. H. M., Berendsen, R. L., Doombos, R. F., Wintermans, P. C. A. and Pieterse, C. M. J. (2013). The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 4:165. DOI: https://doi.org/10.3389/fpls.2013.00165

Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. and El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13:1140. DOI: https://doi.org/10.3390/su13031140

Boussadia, O., Steppe, K., Zgallai, H., Hadj, S., Braham, M., Lemeur, R. and Van Labeke, M. (2010). Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars 'Meski' and 'Koroneiki'. Scientia Horticulturae, 123:336-342. DOI: https://doi.org/10.1016/j.scienta.2009.09.023

Britannica, T. (2024). Editors of Encyclopaedia pineapple. Encyclopedia Britannica. Retrieved from https://www.britannica.com/plant/pineapple

Castillo, L. E., Martínez, E., Ruepert, C., Savage, C., Gilek, M., Pinnock, M. and Solis, E. (2006). Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, Limon, Costa Rica. Science of the Total Environment, 367:418-432. DOI: https://doi.org/10.1016/j.scitotenv.2006.02.052

Chen, X., Wang, Y., Gao, Y., Gao, T. and Zhang, D. (2019). Inhibitory abilities of Bacillus isolates and their culture filtrates against the gray mold caused by Botrytis cinerea on postharvest fruit. The plant pathology journal, 35:425-436. DOI: https://doi.org/10.5423/PPJ.OA.03.2019.0064

Choi, S. I., Lim, H. I., Ajuna, H. B., Moon, J. H., Won, S. J., Choub, V., Yun, J. Y. and Ahn, Y. S. (2024). Biocontrol of fungal pathogens and growth promotion in the Korean fir (Abies koreana E. H. Wilson) seedling using Bacillus velezensis CE 100. Biological Control, 198:105620. DOI: https://doi.org/10.1016/j.biocontrol.2024.105620

Choi, T. G., Maung, C. E. H., Lee, D. R., Henry, A. B., Lee, Y. S. and Kim, K. Y. (2020). Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE 100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato. Biocontrol Science and Technology, 30:685-700. DOI: https://doi.org/10.1080/09583157.2020.1765980

Choo, L. N. L. K., Ahmed, O. H., Razak, N. A. and Sekot, S. (2022). Improving nitrogen availability and Ananas comosus L. Merr var. Moris productivity in a tropical peat soil using clinoptilolite zeolite. Agronomy, 12:2750. DOI: https://doi.org/10.3390/agronomy12112750

Choub, V., Ajuna, H. B., Won, S. J., Moon, J. H., Choi, S. I., Maung, C. E. H., Kim, C. W. and Ahn, Y. S. (2021a). Antifungal activity of Bacillus velezensis CE 100 against anthracnose disease (Colletotrichum gloeosporioides) and growth promotion of walnut (Juglans regia L.) trees. International Journal of Molecular Sciences, 22:10438. DOI: https://doi.org/10.3390/ijms221910438

Choub, V., Maung, C. E. H., Won, S. -J., Moon, J. H., Kim, K. Y., Han, Y. S., Cho, J. Y. and Ahn, Y. S. (2021b). Antifungal activity of cyclic tetrapeptide from Bacillus velezensis CE 100 against plant pathogen Colletotrichum gloeosporioides. Pathogens, 10:209. DOI: https://doi.org/10.3390/pathogens10020209

Etesami, H. and Glick, B. R. (2024). Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiological Research, 281:127602. DOI: https://doi.org/10.1016/j.micres.2024.127602

FAO (2021). Standard operating procedure for soil pH determination. Rome.

FAOSTAT (2024). Pineapple production in 2022, Crops/Regions/World list/Production Quantity/Year (pick lists). UN Food and Agriculture Organization, Corporate Statistical Database. Retrieved from https://www.fao.org/faostat/en/#data/QCL/visualize

Fasusi, O. A., Cruz, C. and Babalola, O. O. (2021). Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture, 11:163. DOI: https://doi.org/10.3390/agriculture11020163

Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y. and Chou, J. Y. (2015). Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant signaling & behavior, 10:e1048052. DOI: https://doi.org/10.1080/15592324.2015.1048052

Gomaa, E. Z. (2012). Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. The Journal of Microbiology, 50:103-111. DOI: https://doi.org/10.1007/s12275-012-1343-y

Gunawardena, M. A. and Lokupitiya, E. (2024). Comparison of conventionally and organically grown pineapple in Sri Lanka: An integrative approach applying life cycle assessment and externalities. Cleaner Environmental Systems, 14:100219. DOI: https://doi.org/10.1016/j.cesys.2024.100219

Hong, S., Kim, T. Y., Won, S. J., Moon, J. H., Ajuna, H. B., Kim, K. Y. and Ahn, Y. S. (2022). Control of fungal diseases and fruit yield improvement of strawberry using Bacillus velezensis CE 100. Microorganisms, 10:365. DOI: https://doi.org/10.3390/microorganisms10020365

Huang, L., Li, Q. C., Hou, Y., Li, G. Q., Yang, J. Y., Li, D. W. and Ye, J. R. (2017). Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicus. Biocontrol Science and Technology, 27:636-653. DOI: https://doi.org/10.1080/09583157.2017.1319910

Isidra-Arellano, M. C., Delaux, P. M. and Valdés-López, O. (2021). The Phosphate Starvation Response System: Its Role in the Regulation of Plant-Microbe Interactions. Plant & cell physiology, 62:392-400. DOI: https://doi.org/10.1093/pcp/pcab016

Itelima, J. U., Bang, W. J., Sila, M. D., Onyimba, I. A. and Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A Review. Direct Research Journal of Agriculture and Food Science, 6:73-83.

Khamtib, S., Bunpha, K., Jangsirikul, K. and Chimchart, B. (2023). Effect of Burkholderia ferrariae PaS2(1) on growth and yield of pineapple in pot experiment. 61st Kasetsart University Annual Conference, pp.268-275. Retrieved from https://agkb.lib.ku.ac.th/doa/search_detail/result/425769

Khan, A. L., Halo, B. A., Elyassi, A., Ali, S., Al-Hosni, K. and Hussain, J. (2016). Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electronic Journal of Biotechnology, 21:58-64. DOI: https://doi.org/10.1016/j.ejbt.2016.02.001

Krishan, H., Singh, R. K. D. and Langpoklakpam, B. (2017). Effect of variety and bio-fertilizer on growth and yield of pineapple (Ananas comosus (L.) Merr.). Journal of Pharmacognosy and Phytochemistry, 6:2568-2571.

Kumar S., Diksha, Sindhu, S. S. and Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3:100094. DOI: https://doi.org/10.1016/j.crmicr.2021.100094

Kumar, C., Ahirwar, M. K., Thakur, K., Vishvakarma, D. and Singh, D. (2023). Physiological disorders and management of pineapple, pomegranate and papaya. In: Physiological Disorders of Commercial Fruit Crops, India, Elite Publishing House, pp.197-211.

Lambers, H. (2022). Phosphorus Acquisition and Utilization in Plants. Annual review of plant biology, 73:17-42. DOI: https://doi.org/10.1146/annurev-arplant-102720-125738

Liang, Z., Jin, X., Zhai, P., Zhao, Y., Cai, J., Li, S., Yang, S., Li, C. and Li, C. (2022). Combination of organic fertilizer and slow-release fertilizer increases pineapple yields, agronomic efficiency and reduces greenhouse gas emissions under reduced fertilization conditions in tropical areas. Journal of Cleaner Production, 343:131054. DOI: https://doi.org/10.1016/j.jclepro.2022.131054

Liu, J., He, C., Shen, F., Zhang, K. and Zhu, S. (2017). The crown plays an important role in maintaining quality of harvested pineapple. Postharvest Biology and Technology, 124:18-24. DOI: https://doi.org/10.1016/j.postharvbio.2016.09.007

Moon, J. H., Won, S. J., Maung, C. E. H., Choi, J. H., Choi, S. I., Ajuna, H. B. and Ahn, Y. S. (2021). Bacillus velezensis CE 100 inhibits root rot diseases (Phytophthora spp.) and promotes the growth of Japanese cypress (Chamaecyparis obtusa Endlicher) seedlings. Microorganisms, 9:821. DOI: https://doi.org/10.3390/microorganisms9040821

Murgese, P., Santamaria, P., Leoni, B. and Crecchio, C. (2020). Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in Barattiere (Cucumis melo L.). Journal of Soil Science and Plant Nutrition, 20:784-793. DOI: https://doi.org/10.1007/s42729-019-00165-1

Nosheen, S., Ajmal, I. and Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13:1868. DOI: https://doi.org/10.3390/su13041868

Park, H. G., Jeong, M. H. and Ahn, Y. S. (2017). Inoculation with Bacillus licheniformis MH48 to improve Camellia japonica seedling development in coastal lands. Turkish Journal of Agriculture and Forestry, 41:381-388. DOI: https://doi.org/10.3906/tar-1703-147

Rahman, S. M. E., Mele, M. A., Lee, Y. T. and Islam, M. Z. (2021). Consumer preference, quality, and safety of organic and conventional fresh fruits, vegetables, and cereals. Foods, 10:105. DOI: https://doi.org/10.3390/foods10010105

Razaq, M., Zhang, P., Shen, H. L. and Salahuddin (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PloS one, 12:e0171321. DOI: https://doi.org/10.1371/journal.pone.0171321

Sharma, B., Yadav, L., Pandey, M. and Shrestha, J. (2022). Application of biofertilizers in crop production: A review. Peruvian Journal of Agronomy, 6:13-31. DOI: https://doi.org/10.21704/pja.v6i1.1864

Sharma, N. and Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: A Review. International Journal of Agriculture, Environment and Biotechnology, 10:675-679. DOI: https://doi.org/10.5958/2230-732X.2017.00083.3

Smaill, S. J. and Walbert, K. (2013). Fertilizer and fungicide use increases the abundance of less beneficial ectomycorrhizal species in a seedling nursery. Applied Soil Ecology, 65:60-64. DOI: https://doi.org/10.1016/j.apsoil.2013.01.007

Zayed, O., Hewedy, O. A., Abdelmoteleb, A., Ali, M., Youssef, M. S., Roumia, A. F., Seymour, D. and Yuan, Z. C. (2023). Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules, 13:1443. DOI: https://doi.org/10.3390/biom13101443