Isolation and characterization of bacterial agglutinating lectin from Lima Bean (Phaseolus lunatus L.)
Main Article Content
Abstract
Results showed that the isolated lima bean lectin (LBL) exhibited a total protein composition of 0.261 mg/mL and was found to be a glycoprotein containing 0.053 µg of carbohydrates per milligram of protein. The hapten inhibition assay presented that purified LBL is precise to the following sugars such as glucose, N-acetyl-d-glucosamine, d-galactose, xylose, fructose, sucrose, d-maltose, mannose, mannitol, raffinose, arabinose, and lactose. It is also demonstrated that LBL established an affinity toward bacteria causing disease such as Escherichia coli and Bacillus subtilis. LBL is shown to be a strong agglutinating action against E. coli, it can be used as a ligand for sensing foodborne pathogens and is important in developing lectin-based biosensors.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Aletor, V. A. (1987). Biological and chemical characterization of haemagglutinins from three edible varieties of Lima beans (Phaseolus lunatus, Linn.). Food chemistry, 25:175-182. DOI: https://doi.org/10.1016/0308-8146(87)90144-0
Aragones, R. C and Merca, F. E. (1998). Two lectins from the seeds of lablab bean (Lablab purpureus Linn. Cv. Highworth). The Philippine journal of science, 127:15-37.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 7:248-254. DOI: https://doi.org/10.1006/abio.1976.9999
Brooks, S. A. (2017). Lectin Histochemistry: Historical Perspectives, State of the Art, and the Future. In: Pellicciari C, Biggiogera M (eds) Histochemistry of single molecules. Methods in molecular biology, vol 1560. Humana Press, New York. DOI: https://doi.org/10.1007/978-1-4939-6788-9_6
Dan, X., Liu, W. and Ng, T. B. (2016) Development and applications of lectins as biological tools in biomedical research. Medicinal Research Reviews, 36:221-247. DOI: https://doi.org/10.1002/med.21363
Dubois, M., Guilles, K. A., Hamilton, J. K., et al. (1956) Calorimetric method for the determination of sugars and related substances. Analytical Chemistry, 18:350-356. DOI: https://doi.org/10.1021/ac60111a017
Galbraith, W. and Goldstein, I. J. (1970). Phytohemagglutinins: A new class of metalloproteins. Isolation, purification, and some properties of the lectin from Phaseolus lunatus. FEBS Letter, 9:197-201. DOI: https://doi.org/10.1016/0014-5793(70)80354-4
Goldstein, I. J., Murphy, L. A. and Ebisu, S. (1977). Lectins as Carbohydrate-binding Proteins. Pure and Applied Chemistry, 49:1095-1103. DOI: https://doi.org/10.1351/pac197749081095
Gondim, A. C. S., Romero-Canelón, I., Sousa, E. H. S., Blindauer, C. A., Butler, J. S., Romero, M. J., Sanchez-Cano, C., Sousa, B. L., Chaves, R. P. and Nagano, C. S. (2017). The Potent Anti-Cancer Activity of Dioclea Lasiocarpa Lectin. The Journal of Inorganic Biochemistry, 175:179-189. DOI: https://doi.org/10.1016/j.jinorgbio.2017.07.011
Hendrickson, O. D. and Zherdev, A. V. (2018). Analytical application of lectins. Critical Reviews in Analytical Chemistry, 48:279-292. DOI: https://doi.org/10.1080/10408347.2017.1422965
Hendrickson, O. D., Smirnova, N. I., Zherdev, A. V. Gasparyan, V. K and Dzantiev, B. B. (2017). Enzyme-linked lectin sorbent assay of Escherichia coli and Staphylococcus aureus. Applied Biochemistry and Microbiology, 53:107-113. DOI: https://doi.org/10.1134/S0003683817010082
Katoch, R. and Tripathi, A. (2021). Research advances and prospects of legume lectins. Journal of biosciences, 46:104. DOI: https://doi.org/10.1007/s12038-021-00225-8
Laemmli, U. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227:680-685. DOI: https://doi.org/10.1038/227680a0
Lourembam, C. B., Shantibala Devi, G. A. and Singh, C. B. (2020). Lima Bean (Phaseolus lunatus L.) – A Health Perspective. International Journal of Scientific and Technology Research, 9:2277-8616.
Medearis, D. N., Jr, Camitta, B. M. and Heath, E. C. (1968). Cell wall composition and virulence in Escherichia coli. The Journal of experimental medicine, 128:399-414. DOI: https://doi.org/10.1084/jem.128.3.399
Mi, F., Guan, M., Hu, C., Peng, F., Sun, S. and Wang, X. (2021). Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. Analyst, 146:429-443. DOI: https://doi.org/10.1039/D0AN01459A
Michael, T. and Smith, C. M. (1995). Lectins probe molecular films in biofouling: characterization of early films on non-living and living surfaces. Marine Ecology Progress Series, 119:229-236. DOI: https://doi.org/10.3354/meps119229
Mojica, E. and Merca, F. E. (2004). Lectin from the body walls of black sea cucumber (Holothuria atra Jäger). Philippine Journal of Science, 133:77-85.
Nader, N., Ismail, H. B., Aissa-Fennira, F. B. and Cho, N. (2015). In vitro assessment of Phaseolus vulgaris L. lectins activities against various pathogenic and beneficial microbes. Research journal of biotechnology, 10.
Naisbett, B. and Woodley, J. (1990). Binding of tomato lectin to the intestinal mucosa and its potential for oral drug delivery. Biochemical Society Transactions, 18:879. DOI: https://doi.org/10.1042/bst0180879a
Nareddy, P. K., Bobbili, K. B. and Swamy, M. J. (2017). Purification, physico-chemical characterization and thermodynamics of oligosaccharide binding to cucumber (Cucumis sativus) phloem lectin. International journal of biological macromolecules, 95:910-919. DOI: https://doi.org/10.1016/j.ijbiomac.2016.10.078
Nizet, V., Varki, A. and Aebi, M. (2017). Microbial lectins: hemagglutinins, adhesins, and toxins. Essentials of glycobiology. 3rd edn, vol 37. Cold Spring Harbor Laboratory Press, New York, NY.
Occena, I. V, Mojica, E. E. and Merca, F. E. (2007). Isolation and partial characterization of a lectin from the seeds of Artocarpus camansi Blanco. Asian Journal of Plant Sciences, 6:757-764. DOI: https://doi.org/10.3923/ajps.2007.757.764
Padma, P., Komath, S. S. and Swamy, M. J. (1998). Fluorescence quenching and time‐resolved fluorescence studies orubinn Momordica charantia (Bitter Gourd) seed lectin. IUBMB Life, 45:911-922. DOI: https://doi.org/10.1002/iub.7510450509
Raghu, H. V., Shivendra, T., Chandrasekhar, B., Harshitha, C. G., Gandhi, K., Kumar, N., Aluko, R. E. and Puniya, A. K. (2022). Monitoring of microbial safety of foods using lectins: A Review. Frontiers in Food Science and Technology, 2:1-11. DOI: https://doi.org/10.3389/frfst.2022.842063
Raghu, H. V. and Kumar, N. (2020). Rapid detection of listeria monocytogenes in milk by surface plasmon resonance using wheat germ agglutinin. Food Analytical Methods, 13:982-991. DOI: https://doi.org/10.1007/s12161-020-01717-3
Rubeena, A. S., Divya, M., Vaseeharan, B., Karthikeyan, S., Ringø, E. and Preetham, E. (2019). Antimicrobial and biochemical characterization of a C-type lectin isolated from pearl spot (Etroplus suratensis). Fish & shellfish immunology, 87:202-211. DOI: https://doi.org/10.1016/j.fsi.2018.12.070
Selvaprakash, K. and Chen, Y. C. (2018). Functionalized gold nanoparticles as affinity nanoprobes for multiple lectins. Colloids and Surfaces B: Biointerfaces, 162:60-68. DOI: https://doi.org/10.1016/j.colsurfb.2017.11.022
Sharon, N. (1993). Lectin-carbohydrate complexes of plants and animals: an atomic view. Trends in biochemical sciences, 18:221-226. DOI: https://doi.org/10.1016/0968-0004(93)90193-Q
Sharon, N. and Lis, H. (1990). Legume lectins: a large family of homologous proteins. The FASEB Journal, 4:3198-3208. DOI: https://doi.org/10.1096/fasebj.4.14.2227211
Singh, R. S. and Bhari R. (2014). Current status of microbial lectins in biomedical research. Advances in Industrial Biotechnology, 315-362.
Sparvoli, F. and Bollini, R. (1998). Arcelin in wild bean (Phaseolus vulgaris L.) seeds: sequence of arcelin 6 shows it is a member of the arcelins 1 and 2 subfamily. Genetic Resources and Crop Evolution, 45:383-388. DOI: https://doi.org/10.1023/A:1008682917192
Streshinskaya, G. M., Shashkov, A. S., Potekhina, N. V., Kozlova, Yu. I., Tul’skaya, E. M., Senchenkova, S. N., Kudryashova, E. B. and Anan’ina. L. N. (2011). Carbohydrate-containing cell wall polymers of some strains of the Bacillus subtilis group. Microbiology, 80:21-29. DOI: https://doi.org/10.1134/S0026261711010164
Suzuki, T., Abe, T., Umehara, K., Choi, J. H., Hirai, H., Dohra, H. and Kawagishi, H. (2015). Purification and characterization of a lectin from the mushroom Hypsizigus Marmoreus. Mycoscience, 56:359-363. DOI: https://doi.org/10.1016/j.myc.2014.11.001
Yamamoto, S., Sakai, I. and Akiyama, T. (1984). Lewis-like activities of rabbit antisera against glycoconjugates present in edible organs of phanerogamia and cryptogamia. Experimental and Clinical Immunogenetics, 1:193-201.
Yang, S., Pei, X., Wang, G., Yan, L., Hu, J., Li, Y., Li, N. and Yang, D. (2016). Prevalence of foodborne pathogens in ready-to-eat meat products in seven different Chinese regions. Journal of Food Control, 65:92-98. DOI: https://doi.org/10.1016/j.foodcont.2016.01.009
Zhang, X., Teng, Y., Fu, Y., Xu, L., Zhang, S., He, B., Wang, C. and Zhang, W. (2010). Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Analytical Chemistry, 82:9455-9460. DOI: https://doi.org/10.1021/ac102132p