The effect of the drying process on the SFE optimization of bio-compounds of mango (Mangifera indica L.) and pineapple (Ananas comosus) peels
Main Article Content
Abstract
The effect of vacuum and freeze drying on the optimization of the supercritical fluid extraction (SFE) process of mango and pineapple peels to obtain bioactive extracts was evaluated. The influence of several SFE parameters was investigated using a central composite design (CCD) with four central points, to estimate the effect of three independent variables (co-solvent flow rate, pressure and temperature) on the yield, antioxidant activity, and content of bioactive compounds. It was found that vacuum drying was more effective for mango peels (ethanol flow) and freeze-drying for pineapple peels (ethanol flow and temperature). Using the multiple response methodology by the desirability approach, the optimum SFE conditions for mango peel were found at a co-solvent flow rate of 13.65%, temperature of 36.76 °C, and pressure of 294.82 bar, whereas the optimal conditions for pineapple peel were found at a co-solvent flow rate of 12.39%, temperature of 43 °C, and pressure of 100 bar. According to these results, an adequate combination of the drying method and SFE in optimal conditions makes possible the integral use of these fruits to obtain valuable extracts with high potential to be used in various industries.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Aghbashlo, M., Mobli, H., Rafiee, S. and Madadlou, A. (2013). A review on exergy analysis of drying processes and systems. Renewable and Sustainable Energy Reviews, 22:1-22.
Ameer, K., Shahbaz, H. M. and Kwon, J. H. (2017). Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Comprehensive Reviews in Food Science and Food Safety, 16:295-315.
AOAC (2000). Official methods of analysis of AOAC International (17th ed., Method 934.01). AOAC International.
Argyropoulos, D. and Müller, J. (2014). Effect of convective-, vacuum- and freeze drying on sorption behaviour and bioactive compounds of lemon balm (Melissa officinalis L.). Journal of Applied Research on Medicinal and Aromatic Plants, 1:59-69.
Berardini, N., Knödler, M., Schieber, A. and Carle, R. (2005). Utilization of mango peels as a source of pectin and polyphenolics. Innovative Food Science and Emerging Technologies, 6:442-452.
Carvalho, R. N., Moura, L. S., Rosa, P. T. V. and Meireles, M. A. A. (2005). Supercritical fluid extraction from rosemary (Rosmarinus officinalis): Kinetic data, extract’s global yield, composition, and antioxidant activity. Journal of Supercritical Fluids, 35:197-204.
Chen, D., Xing, B., Yi, H., Li, Y., Zheng, B., Wang, Y. and Shao, Q. (2020). Effects of different drying methods on appearance, microstructure, bioactive compounds, and aroma compounds of saffron (Crocus sativus L.). LWT - Food Science and Technology, 120:108913.
Chen, X., Li, X., Mao, X., Huang, H., Wang, T., Qu, Z. and Gao, W. (2017). Effects of drying processes on starch-related physicochemical properties, bioactive components, and antioxidant properties of yam flours. Food Chemistry, 224:224-232.
Da Silva, L. M. R., De Figueiredo, E. A. T., Ricardo, N. M. P. S., Vieira, I. G. P., De Figueiredo, R. W., Brasil, I. M. and Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143:398-404.
Dorta, E., Lobo, M. G. and González, M. (2012). Using drying treatments to stabilize mango peel and seed: Effect on antioxidant activity. LWT - Food Science and Technology, 45:261-268.
Dos Santos, W. J., Silva, E. A. and Taranto, O. P. (2013). Supercritical fluid extraction from mango (Mangifera indica L.) leaves: Experiments and modeling. Chemical Engineering Transactions, 32:2005-2010.
FAO (2019). The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. THE STATE OF THE WORLD. Rome. https://doi.org/10.4324/9781315764788
Ferreira, S., Araujo, T., Souza, N., Rodrigues, L., Lisboa, H. M., Pasquali, M. and Rocha, A. P. (2019). Physicochemical, morphological and antioxidant properties of spray-dried mango kernel starch. Journal of Agriculture and Food Research, 1:100012.
Garcia-Mendoza, M. P., Paula, J. T., Paviani, L. C., Cabral, F. A. and Martinez-Correa, H. A. (2015). Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT - Food Science and Technology, 62:131-137.
Herrero, M., Mendiola, J. A., Cifuentes, A. and Ibáñez, E. (2010). Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A, 1217:2495-2511.
Hossain, M. B., Barry-Ryan, C., Martin-Diana, A. B. and Brunton, N. P. (2010). Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry, 123:85-91.
Jawad, A. H., Alkarkhi, A. F. M., Jason, O. C., Easa, A. M. and Nik Norulaini, N. a. (2013). Production of lactic acid from mango peel waste - Factorial experiment. Journal of King Saud University - Science, 25:39-45.
Kalaiselvi, M., Gomathi, D. and Uma, C. (2012). Occurrence of Bioactive compounds in Ananus comosus (L.): A quality standardization by HPTLC. Asian Pacific Journal of Tropical Biomedicine, 2:S1341-S1346.
Kantrong, H., Tansakul, A. and Mittal, G. S. (2014). Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying. Journal of Food Science and Technology, 51:3594-3608.
Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E. and Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188:32-49.
Kuskoski, E. M., Asuero, A. G., Morales, M. T. and Fett, R. (2006). Frutos tropicais silvestres e polpas de frutas congeladas: Atividade antioxidante, polifenóis e antocianinas. Ciencia Rural, 36:1283-1287.
Le, H. M. (2012). Antioxidative effects of mango wastes on shelf life of pork products. (Digital Ph.D. Thesis). Lincoln University, Christchurch, New Zealand.
Li, H., Xie, L., Ma, Y., Zhang, M., Zhao, Y. and Zhao, X. (2019). Effects of drying methods on drying characteristics, physicochemical properties, and antioxidant capacity of okra. LWT - Food Science and Technology, 101:630-638.
Li, Y. H., Qi, Y. R., Wu, Z. F., Wang, Y. Q., Wang, X. C., Wang, F. and Yang, M. (2017). Comparative study of microwave-vacuum and vacuum drying on the drying characteristics, dissolution, physicochemical properties, and antioxidant capacity of Scutellaria extract powder. Powder Technology, 317:430-437.
Liu, Y. G., Zhang, X. M., Ma, F. Y. and Qiong, F. (2017). The antioxidant activities of mango peel among different cultivars. IOP Conference Series: Earth and Environmental Science, 81.
Luthria, D. L. (2012). Optimization of extraction of phenolic acids from a vegetable waste product using a pressurized liquid extractor. Journal of Functional Foods, 4:842-850.
Madalageri, D., Bharati, P. C., Orsat, V., Raghavan, V. and Kage, U. (2015). Antioxidant activity in pulp and peel of three mango varieties. Journal of Horticultural Sciences, 10:199-209.
Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A. and Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple, and passion fruit dietary fibre concentrate. Food Chemistry, 135:1520-1526.
Meneses, M. A., Caputo, G., Scognamiglio, M., Reverchon, E. and Adami, R. (2015). Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. Journal of Food Engineering, 163:45-53.
Mustafa, A. and Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703:8-18.
Oliveira, A. C. de, Valentim, I. B., Silva, C. A., Bechara, E. J. H., Barros, M. P. De, Mano, C. M. and Goulart, M. O. F. (2009). Total phenolic content and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Food Chemistry, 115:469-475.
Osorio-Tobón, J. F., Carvalho, P. I. N., Rostagno, M. A., Petenate, A. J. and Meireles, M. A. A. (2014). Extraction of curcuminoids from deflavored turmeric (Curcuma longa L.) using pressurized liquids: Process integration and economic evaluation. The Journal of Supercritical Fluids, 95:167-174.
Palafox-Carlos, H., Yahia, E., Islas-Osuna, M. A., Gutierrez-Martinez, P., Robles-Sánchez, M. and González-Aguilar, G. A. (2012). Effect of ripeness stage of mango fruit (Mangifera indica L., cv. Ataulfo) on physiological parameters and antioxidant activity. Scientia Horticulturae, 135:7-13.
Paula, J. T., Paviani, L. C., Foglio, M. A., Sousa, I. M. and Cabral, F. A. (2013). Extraction of anthocyanins from Arrabidaea chica in fixed bed using CO2 and CO2/ethanol/water mixtures as solvents. The Journal of Supercritical Fluids, 81:33-41.
Prado, I. M., Prado, G. H., Prado, J. M. and Meireles, M. A. A. (2013). Supercritical CO2 and low-pressure solvent extraction of mango (Mangifera indica) leaves: Global yield, extraction kinetics, chemical composition and cost of manufacturing. Food and Bioproducts Processing, 91:656-664.
Routray, W., Orsat, V. and Gariepy, Y. (2014). Effect of Different Drying Methods on the Microwave Extraction of Phenolic Components and Antioxidant Activity of Highbush Blueberry Leaves. Drying Technology, 32:1888-1904.
Saisung, P. and Theerakulkait, C. (2011). Inhibitory effect of pineapple shell extract and its ultrafiltered fractions on polyphenol oxidase activity and browning in fresh-cut banana slices. CyTA - Journal of Food, 9:37-42.
Sánchez-Mesa, N., Sepúlveda-Valencia, J. U., Ciro-Velásquez, H. J. and Meireles, M. A. (2020). Bioactive compounds from mango peel (Mangifera indica L. var. Tommy Atkins) obtained by supercritical fluids and pressurized liquids extraction. Revista Mexicana de Ingeniería Química, 19:755-766.
Shakya, A. and Agarwal, T. (2019). Removal of Cr (VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment. Journal of Molecular Liquids, 293:111497.
Silva, D. C. M. N., Bresciani, L. F. V., Dalagnol, R. L., Danielski, L., Yunes, R. A. and Ferreira, S. R. S. (2009). Supercritical fluid extraction of carqueja (Baccharis trimera) oil: Process parameters and composition profiles. Food and Bioproducts Processing, 87:317-326.
Sogi, D. S., Siddiq, M., Greiby, I. and Dolan, K. D. (2013). Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chemistry, 141:2649-2655.
Soong, Y. Y. and Barlow, P. J. (2004). Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, 88:411-417.
Souza, M. E. A. O. (2015). Potencial antioxidante de extratos da casca de manga (Mangifera Indica L.) da variedade Tommy Atkins obtidos por métodos a baixa e a alta pressão e dimensionamento de uma coluna para extração supercrítica. Universidade Federal de Santa Catarina. Retried from https://repositorio.ufsc.br/xmlui/handle/123456789/135287
Tetteh, O. N. A., Ulrichs, C., Huyskens-Keil, S., Mewis, I., Amaglo, N. K., Oduro, I. N. and Förster, N. (2019). Effects of harvest techniques and drying methods on the stability of glucosinolates in Moringa oleifera leaves during post-harvest. Scientia Horticulturae, 246:998-1004.
Tokas, J., Punia, H., Baloda, S. and Rn, S. (2020). Mango Peel: A Potential Source of Bioactive Compounds and Phytochemicals. Austin Food Sciences, 5:1-7.
Upadhyay, A., Lama, J. P. and Tawata, S. (2010). Utilization of Pineapple Waste: A Review. Journal of Food Science and Technology Nepal, 6:10-18.
Wang, H., Xie, H., Chen, S., Fu, Q., Wang, R., Zhang, W. and Hu, Z. (2017). Effect of different drying methods on drying characteristics and qualities of lemon slices. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 33:292-299.
Xu, Y., Xiao, Y., Lagnika, C., Li, D., Liu, C., Jiang, N. and Zhang, M. (2020). A comparative evaluation of nutritional properties, antioxidant capacity, and physical characteristics of cabbage (Brassica oleracea var. Capitate var L.) subjected to different drying methods. Food Chemistry, 309:124935.
Ye, S., Wang, Z., Shen, J., Shao, Q., Fang, H., Zheng, B. and Younis, A. (2019). Sensory qualities, aroma components, and bioactive compounds of Anoectochilus roxburghii (Wall.) Lindl. as affected by different drying methods. Industrial Crops and Products, 134:80-88.