The family 36 carbohydrate-binding module of Paenibacillus xylaniclasticus TW1 xylanase: Characterization and recognition in epidermal tissue of sweet potato roots
Main Article Content
Abstract
Paenibacillus xylaniclasticus TW1 was able to aerobically produce a multienzyme complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the crude enzyme preparation revealed at least 12 proteins that were bound to insoluble cellulose. Only the band representing cellulose-bound protein 12 (CBP12) from SDS-PAGE was identified as xylanase family 11 with a carbohydrate-binding module family 36 (CBM36) using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). In this report, CBM36 of P. xylaniclasticus TW1 (PxTW1CBM36) was cloned, expressed, purified and studied for binding characteristic. The results found that PxTW1CBM36 displayed broad binding ability to polysaccharides which high affinity for xylan and insoluble cellulose. Interestingly, this is the first report indicated that CBM36 had an affinity for insoluble cellulose. Although the amino acid residues involved in PxTW1CBM36 binding were conserved, the binding capacity of PxTW1CBM36 do not perturb by the addition of ethylenediaminetetraacetic acid (EDTA). It is possible that PxTW1CBM36 had different binding mechanisms with other CBM36. In addition, the binding characteristic of CBM36 on polysaccharides embedded within plant cell walls was also elucidated. It displayed the strong recognition for ligands located in epidermal tissue of sweet potato roots. Therefore, this study might provide a new tool for targeting enzymes to surface of plant.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abou-Hachem, M., Karlsson, E. N., Simpson, P. J., Linse, S., Sellers, P., Williamson, M. P., Jamieson, S. J., Gilbert, H. J., Bolam, D. N. and Holst, O. (2002). Calcium binding and thermostability of carbohydrate binding module CBM4-2 of Xyn10A from Rhodothermus marinus. Biochemistry, 41:5720-5729.
Araki, Y., Karita, S., Tsuchiya, T., Kondo, M. and Goto, M. (2010). Family 17 and 28 carbohydrate-binding modules discriminated different cell-wall sites in sweet potato roots. Bioscience, Biotechnology, and Biochemistry, 74:802-805.
Bayer, E. A., Morag, E. and Lamed, R. (1994). The cellulosome: A treasure trove for biotechnology. Trends in Biotechnology, 12:379-386.
Berg, B., Hofsten, B. V. and Pettersson, G. (1972). Growth and cellulase formation by Cellvibrio fulvus. Journal of Applied Bacteriology, 35:201-214.
Boraston, A. B., Bolam, D. N., Gilbert, H. J. and Davies, G. J. (2004). Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochemical Journal, 382:769-781.
Carpita, N. C. and McCann, M. C. (2020). Redesigning plant cell walls for the biomass-based bioeconomy. Journal of Biological Chemistry, 295:15144-15157.
Carvalho, A. L., Goyal, A., Prates, J. A. M., Bolam, D. N., Gilbert, H. J., Pires, V. M. R., Ferreira, L. M. A., Planas, A., Romão, M. J. and Fontes, C. M. G. A. (2004). The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates β-1,4- and β-1,3-1,4-mixed linked glucans at a single binding site. Journal of Biological Chemistry, 279:34785-34793.
Fersht, A. R., Shi, J. -P., Knill-Jones, J., Lowe, D. M., Wilkinson, A. J., Blow, D. M., Brick, P., Carter, P., Waye, M. M. Y. and Winter, G. (1985). Hydrogen bonding and biological specificity analysed by protein engineering. Nature, 314:235-238.
Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S. and Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101:4775-4800.
Hanna, S. L., Sherman, N. E., Kinter, M. T. and Goldberg, J. B. (2000). Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: An analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology, 146:2495-2508.
Hasunuma, T., Okazaki, F., Okai, N., Hara, K. Y., Ishii, J. and Kondo, A. (2013). A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresource Technology, 135:513-522.
Henrissat, B., Terrapon, N., Coutinho, P. M., Lombard, V., Drula, E., Garron, M. L. and Boulinguiez, M. (2024). The carbohydrate-active enzymes database (CAZy). Carbohydrate-Binding Module family classification. Retrieved from http://www.cazy.org/Carbohydrate-Binding-Modules.html.
Himmel, M.E., Ding, S.Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W. and Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315:804-807.
Jamal-Talabani, S., Boraston, A. B., Turkenburg, J. P., Tarbouriech, N., Ducros, V. M. -A. and Davies, G. J. (2004). Ab initio structure determination and functional characterization of CBM36: A new family of calcium-dependent carbohydrate binding modules. Structure, 12:1177-1187.
Jiang, Z. Q., Deng, W., Li, X. T., Ai, Z. L., Li, L. T. and Kusakabe, I. (2005). Characterization of a novel, ultra-large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86. Enzyme and Microbial Technology, 36:923-929.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680-685.
Mach, H., Middaugh, C. R. and Lewis, R. V. (1992). Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Analytical Biochemistry, 200:74-80.
McCartney, L., Gilbert, H. J., Bolam, D. N., Boraston, A. B. and Knox, J. P. (2004). Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Analytical biochemistry, 326:49-54.
McCartney, L., Blake, A. W., Flint, J., Bolam, D. N., Boraston, A. B., Gilbert, H. J. and Knox, J. P. (2006). Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proceedings of the National Academy of Sciences of the United States of America, 103:4765-4770.
Montanier, C., Flint, J. E., Bolam, D. N., Xie, H., Liu, Z., Rogowski, A., Weiner, D. P., Ratnaparkhe, S., Nurizzo, D. Roberts, S. M., Turkenburg, J. P., Davies, G. J. and Gilbert, H. J. (2010). Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules. Journal of Biological Chemistry, 285:31742-31754.
Morris, D. D., Gibbs, M. D., Ford, M., Thomas, J. and Bergquist, P. L. (1999). Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles, 3:103-111.
Ohmiya, K., Sakka, K., Karita, S. and Kimura, T. (1997). Structure of cellulases and their applications. Biotechnology and Genetic Engineering Reviews, 14:365-414.
O’Neill, M. A. and York, W. S. (2003). The composition and structure of plant primary cell walls. In: Rose JKC ed. The Plant Cell Wall, Ithaca, New York, Blackwell Publishing/CRC Press, pp. 1-54.
Pason, P., Kosugi, A., Waeonukul, R., Tachaapaikoon, C., Ratanakhanokchai, K., Arai, T., Murata, Y., Nakajima, J. and Mori, Y. (2010). Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Applied Microbiology and Biotechnology, 85:573-580.
Shoseyov, O., Shani, Z. and Levy, I. (2006). Carbohydrate binding modules: Biochemical properties and novel applications. Microbiology and Molecular Biology Reviews, 70:283-295.
Tachaapaikoon, C., Kyu, K. L., Pason, P. and Ratanakhanokchai, K. (2012a). A novel multienzyme complex from a newly isolated facultative anaerobic bacterium, Paenibacillus sp. TW1. Acta Biologica Hungarica, 63:288-300.
Tachaapaikoon, C., Tanasupawat, S., Pason, P., Sornyotha, S., Waeonukul, R., Kyu, K. L. and Ratanakhanokchai, K. (2012b). Paenibacillus xylaniclasticus sp. nov., a xylanolytic-cellulolytic bacterium isolated from sludge in an anaerobic digester. Journal of Microbiology, 50:394-400.
van Dyk, J. S., Sakka, M., Sakka, K. and Pletschke, B. I. (2009). The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme and Microbial Technology, 45:372-378.
Waeonukul, R., Pason, P., Kyu, K. L., Sakka, K., Kosugi, A., Mori, Y. and Ratanakhanokchai, K. (2009). Cloning, sequencing, and expression of the gene encoding a multidomain endo-β-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. Journal of Microbiology and Biotechnology, 19:277-285.
Wood, P. J., Weisz, J. and Blackwell, B. A. (1994). Structural studies of (1→3), (1→4)-β-D-glucans by 13C-nuclear magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal chemistry, 71:301-307.
Zhang, J., Tang, M. and Viikari, L. (2012). Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresource Technology, 121:8-12.