Fungicide resistance of chrysanthemum fungal pathogens and control of leaf spot disease in pot conditions using effective fungicides
Main Article Content
Abstract
Leaf spot and wilt are the most destructive diseases affecting chrysanthemum crops in Thailand. The results revealed that two leaf spot pathogens were similar to Stemphylium lycopersici and Epicoccum sorghinum, while wilt pathogens were close to Fusarium solani and F. oxysporum. Among all the tested fungicides, S. lycopersici was sensitive to iprodione, whereas E. sorghinum was found to be susceptible to three fungicides: iprodione, difenoconazole, and mancozeb. Of the soilborne fungi, F. solani was sensitive only to chlorothalonil, whereas F. oxysporum was sensitive to four fungicides: chlorothalonil, difenoconazole, copper oxychloride, and mancozeb. The two fungicides that effectively controlled leaf spots caused by E. sorghinum on detached leaves were difenoconazole (1,000 ppm) and mancozeb (2,000 ppm), with 76.9 and 84.6% disease control, respectively. Furthermore, mancozeb (2,000 ppm) greatly suppressed the disease in pot conditions by 93.9%. This finding indicated that mancozeb is an effective fungicide for further use in rotation with difenoconazole as a part of the chrysanthemum disease management program in Nakhon Ratchasima and Loei provinces
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Afandi, A., Masanto, Wibowo, A., Afandi, Loekito, S., Subandiyah, S., Hieno, A., Otsubo, K. and Koji, K. (2022). Molecular identification of oomycetes related to horticultural crops in Southern Sumatera and Java, Indonesia. Journal of Tropical Plant Pests and Diseases, 22:90-99.
Aggarwal, S. K., Hooda, K. S., Kaur, H., Gogoi, R., Chauhan, P., Bagaria, P. K., Kumar, P., Choudhary, M., Tiwari, R. K. and Lal, M. K. (2023). Comparative evaluation of management modules against Maydis leaf blight disease in maize (Zea mays). European Journal of Plant Pathology, 168:485-495.
Alberoni, G., Cavallini, D., Collina, M. and Brunelli, A. (2010). Characterisation of the first Stemphylium vesicarium isolates resistant to strobilurins in Italian pear orchards. European Journal of Plant Pathology, 126:453-457.
Alberoni, G., Collina, M., Pancaldi, D. and Brunelli, A. (2005). Resistance to dicarboximide fungicides in Stemphylium vesicarium of Italian pear orchards. European Journal of Plant Pathology, 113:211-219.
Ali, N. (2023). Incidence and diversity of plant parasitic nematode communities associated with greenhouse ornamental plants in the coastal region of Syria. European Journal of Plant Pathology, 166:491-508.
Andrade, S. M. P., Augusti, G. R., Paiva, G. F., Feksa, H. R., Tessmann, D. J., Machado, F. J., Mizubuti, E. S. G. and Del Ponte, E. M. (2022). Phenotypic and molecular characterization of the resistance to azoxystrobin and pyraclostrobin in Fusarium graminearum populations from Brazil. Plant Pathology, 71:1152-1163.
Arora, S. and Gopal, M. (2006). Bioefficacy of iprodione against two desapers, its compatibility with T. harzianum and residues on cabbage crop. Journal of Environmental Science and Health Part B, 41:949-963.
Avila-Adame, C., Olaya, G. and Köller, W. (2003). Characterization of Colletotrichum graminicola isolates resistant to strobilurin-related QoI fungicides. Plant Disease, 87:1426-1432.
Bang, Y. H., Song, E. G., Lee, Y. and Ryu, K. H. (2022). Occurrence of Viruses and Viroids in Chrysanthemum Plants (Dendranthema morifolium) Cultivated in Yesan-gun, Chungcheongnam-do in Korea. Research in Plant Disease, 28:237-244.
Beaulieu, J., Belayneh, B., Lea-Cox, J. D. and Swett, C. L. (2022). Improving containerized nursery crop eustainability: effects of conservation-driven sdaptations in soilless substrate and water use on plant growth and soil-borne disease development. HortScience, 57:674-683.
Bety, Y. A. and Pangestuti, R. (2021). Resistance varieties and pattern of disease progress of rust (Pucciana horiana p. henn) in Chrysanthemum. International Seminar on Agriculture, Biodiversity, Food Security and Health, 883:012023.
Bi, L., Xu, J., Wang, Q., Li, T., Wang, J., Zhou, M. and Duan, Y. (2022). Baseline sensitivity and resistance risk assessment of Stemphylium solani to fluxapyroxad. Crop Protection, 156:105944.
Chandel, S. and Chandel, V. (2010). Correlation of disease with meteorological factors and management of Septoria leaf spot of chrysanthemum (Chrysanthemum grandiflorum). Indian journal of Agricultural sciences, 80:54-58.
Chen, H., Zhao, S., Zhang, K., Zhao, J., Jiang, J., Chen, F. and Fang, W. (2018). Evaluation of soil-applied chemical fungicide and biofungicide for control of the Fusarium wilt of chrysanthemum and their effects on rhizosphere soil microbiota. Agriculture, 8:184.
Chen, Q., Kuang, A., Wu, H., Liu, D., Zhang, X. and Mao, H. (2023). Physiological response of CmWRKY15-1 to chrysanthemum white rust based on TRV-VIGS. Frontiers in Plant Science, 14:1140596.
Chen, Q. H., Li, J. X., Qi, Y., Liu, D. H. and Miao, Y. H. (2021). First report of leaf spot on white chrysanthemum (Chrysanthemum morifolium) caused by Epicoccum sorghinum in Hubei Province, China. Plant Disease, 105:1212.
Contaldo, N., Hanumanthappa, S., Feduzi, G., Pacini, F., Giorgioni, M. E. and Bertaccini, A. (2021). A chrysanthemum decline associated with phytoplasma presence in Italy. Phytopathogenic Mollicutes, 11:15-22.
Dickens, J. S. W. (1990). Studies on the chemical control of chrysanthemum white rust caused by Puccinia horiana. Plant Pathology, 39:434-442.
Ding, S. W., Wang, D. W., Xiang, Y., Xu, C. L. and Xie, H. (2019). Identification and characterization of a fatty acid-and retinoid-binding protein gene (Ar-far-1) from the Chrysanthemum foliar nematode, Aphelenchoides ritzemabosi. International Journal of Molecular Sciences, 20:5566.
Elmer, W. H., Zuverza-Mena, N., Triplett, L. R., Roberts, E. L., Silady, R. A. and White, J. C. (2021). Foliar application of copper oxide nanoparticles suppresses fusarium wilt development on chrysanthemum. Environmental Science & Technology, 55:10805-10810.
Frąc, M., Gryta, A., Oszust, K. and Kotowicz, N. (2016). Fast and accurate microplate method (Biolog MT2) for detection of Fusarium fungicides resistance/sensitivity. Frontiers in Microbiology, 7:489.
Gachango, E., Hanson, L. E., Rojas, A., Hao, J. J. and Kirk, W. W. (2012). Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides. Plant Disease, 96:1767-1774.
Gálvez, L., Gil-Serna, J., García, M., Iglesias, C. and Palmero, D. (2016). Stemphylium leaf blight of garlic (Allium sativum) in Spain: taxonomy and in vitro fungicide response. Plant Pathology Journal, 32:388.
Gourlie, R. and Hsiang, T. (2017). Resistance to dicarboximide fungicides in a canadian population of Microdochium nivale. International Turfgrass Society Research Journal, 13:133-138.
Gupta, N., Prabha, K., Saha, T. N., Kadam, G. B. and Prasad, K. V. (2023). First report of Colletotrichum siamense causing leaf spot on chrysanthemum in India. Indian Phytopathology, 76:663-664.
Hay, F. S., Sharma, S., Hoepting, C., Strickland, D., Luong, K. and Pethybridge, S. J. (2019). Emergence of Stemphylium leaf blight of onion in New York associated with fungicide resistance. Plant Disease, 103:3083-3092.
He, H., Jiang, Y., Chen, S., Chen, F. and Chen, F. (2023). Terpenoids and Their Possible Role in Defense Against a Fungal Pathogen Alternaria tenuissima in Chrysanthemum morifolium Cultivars. Journal of Plant Growth Regulation, 42:1144-1157.
Hollingshead, A. K. (2015) Control of Alternaria solani resistance to boscalid, fluopyram, and chlorothalonil. Provo: Brigham Young University.
Ishii, H. (2006). Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. The Japan Agricultural Research Quarterly, 40:205-211.
Ishii, H., Cools, H. J., Nishimura, K., Borghi, L., Kikuhara, K. and Yamaoka, Y. (2021). DMI-fungicide resistance in Venturia nashicola, the causal agent of Asian pear scab—how reliable are mycelial growth tests in culture?. Microorganisms, 9:1377.
Ishii, H. and Holloman, D. W. (2015) Fungicide resistance in plant pathogens: principles and a guide to practical management. Tokyo: Springer.
Ishii, H., Watanabe, H., Yamaoka, Y. and Schnabel, G. (2022). Sensitivity to fungicides in isolates of Colletotrichum gloeosporioides and C. acutatum species complexes and efficacy against anthracnose diseases. Pesticide Biochemistry and Physiology, 182:105049.
Kopacki, M. and Wagner, A. (2006). Effect of some fungicides on mycelium growth of Fusarium avenaceum (Fr.) Sacc. pathogenic to chrysanthemum (Dendranthema grandiflora Tzvelev). Agronomy Research, 4:237-240.
Kreis, R. A., Dillard, H. R. and Smart, C. D. (2016). Population diversity and sensitivity to azoxystrobin of Alternaria brassicicola in New York State. Plant Disease, 100:2422-2426.
Kumar, V., Hatan, E., Bar, E., Davidovich-Rikanati, R., Doron-Faigenboim, A., Spitzer-Rimon, B., Elad, Y., Alkan, N., Lewinsohn, E. and Oren-Shamir, M. (2020). Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack. The Plant Journal, 104:226-240.
Kwon, J. H., Choi, O. and Kim, J. (2013). Fusarium oxysporum causing wilt and stem rot in Chrysanthemum× morifolium in Korea. Plant Disease, 97:1118.
Lam, C. H. and Lim, T. K. (1993). Efficacy of hexaconazole for the control of white rust on chrysanthemum and powdery mildew on roses. International Journal of Pest Management, 39:156-160.
Li, Y., Wang, Y., Li, X., Fan, H., Gao, X., Peng, Q., Li, F., Lu, L., Miao, J. and Liu, X. (2023). Resistant risk and resistance–related point mutation in SdhC1 of pydiflumetofen in Fusarium pseudograminearum. Pest Management Science, 79:4197-4207.
Lin, S. and Fan, H. (2023). First report of tomato Stemphylium Solani resistance to boscalid and pyraclostrobin in China. Available at SSRN 4529605.
Liu, B., Stein, L., Cochran, K., Du Toit, L. J., Feng, C. and Correll, J. C. (2021). Three new fungal leaf spot diseases of spinach in the United States and the evaluation of fungicide efficacy for disease management. Plant Disease, 105:316-323.
Luo, X., Wang, H. and Wang, M. (2022a). Genomic sequence data of Alternaria alternata hznu325 causing black leaf spot on Chrysanthemum morifolium. Plant Disease, 106:2506-2510.
Luo, X., Xi, Y., Shen, C., Wang, M. and Wang, H. (2022b). Occurrence of Nigrospora sphaerica causing leaf blight on Chrysanthemum morifolium in China. Crop Protection, 157:105982.
Malandrakis, A. A., Apostolidou, Z. A., Markoglou, A. and Flouri, F. (2015). Fitness and cross-resistance of Alternaria alternata field isolates with specific or multiple resistance to single site inhibitors and mancozeb. European Journal of Plant Pathology, 142:489-499.
Maniçoba, F. E., Negreiros, A. M. P., Cavalcante, A. L. A., Santos Alves, C. P. d. S., Nascimento, M. T. d. A. e., Ambrósio, M. M. d. Q. and Sales Júnior, R. (2023). Effect of environmental factors, fungicide sensitivity, and pathogenicity of Fusarium spp. associated with fruit rot of melon. Journal of Phytopathology, 171:504-516.
Matsuura, S. (2019). Does QoI (strobilurin) resistance in isolates of Puccinia horiana, the causal agent of chrysanthemum white rust, occur in western Japan?. Journal of Plant Diseases and Protection, 126:469-473.
Matsuzaki, Y., Harada, T. and Iwahashi, F. (2021a). Amino acid substitutions responsible for different QoI and SDHI sensitivity patterns in Puccinia horiana, the causal agent of chrysanthemum white rust. Plant Pathology, 70:377-386.
Matsuzaki, Y., Harada, T. and Iwahashi, F. (2021b). New cytochrome b haplotypes, harboring L299F or N256S + L299F substitutions, were found in azoxystrobin-resistant Puccinia horiana, the causal agent of chrysanthemum white rust. European Journal of Plant Pathology, 160:963-972.
Miao, W., Ge, L., Wang, Y., Li, S., Sun, D., Liu, Y., Guan, Z., Chen, S., Fang, W., Chen, F. and Zhao, S. (2023). Overexpression of CmWRKY8-1–VP64 fusion protein reduces resistance in response to Fusarium oxysporum by modulating the salicylic acid signaling pathway in Chrysanthemum morifolium. International Journal of Molecular Sciences, 24:3499.
Müllenborn, C., Steiner, U., Ludwig, M. and Oerke, E. C. (2008). Effect of fungicides on the complex of Fusarium species and saprophytic fungi colonizing wheat kernels. European Journal of Plant Pathology, 120:157-166.
Mullett, M., Pérez-Sierra, A., Armengol, J. and Berbegal, M. (2017). Phenotypical and molecular characterisation of Fusarium circinatum: correlation with virulence and fungicide sensitivity. Forests, 8:458.
Munilakshmi, R., Reddy, B. A., Hubballi, M., Kumar, R., Mahesha, B. and Ugalat, J. (2023). Characterization of Puccinia horiana causing Chrysanthemum rust disease and its management by altering planting date and foliar application of fungicide. Indian Phytopathol, 76:437-445.
Navarro, B., Ambrós, S., Di Serio, F. and Hernández, C. (2023). On the early identification and characterization of pear blister canker viroid, apple dimple fruit viroid, peach latent mosaic viroid and chrysanthemum chlorotic mottle viroid. Virus Research, 323:199012.
Nishi, N., Muta, T., Ito, Y., Nakamura, M. and Tsukiboshi, T. (2009). Ray speck of chrysanthemum caused by Stemphylium lycopersici in Japan. Journal of Plant Pathology, 75:80-82.
Nuryani, W., Diningsih, E., Rahardjo, I. B., Sanjaya, L. L., Thamrin, M. and Budiarto, K. (2021). Compatibility of antagonistic bacteria in controlling bacterial leaf blight (Pseudomonas cichorii) in chrysanthemum. Acta Horticulturae, 1334:183-192.
Nuryani, W., Diningsih, E., Rahardjo, I. B., Sanjaya, L. L., Thamrin, M. and Budiarto, K. (2022). Compatibility of antagonistic bacteria in controlling bacterial leaf blight (Pseudomonas cichorii) in chrysanthemum. Acta Horticulturae, 1334:183-192.
Palmer, C. L., Bonde, M. R., Nester, S. E., Revell, J. M. and Luster, D. G. (2015). Fungicide impact on in vitro germination of basidiospores of Puccinia horiana, the causal agent of chrysanthemum white rust. Plant Health Progress, 16:73-76.
Petkar, A., Langston, D. B., Buck, J. W., Stevenson, K. L. and Ji, P. (2017). Sensitivity of Fusarium oxysporum f. sp. niveum to prothioconazole and thiophanate-methyl and gene mutation conferring resistance to thiophanate-methyl. Plant Disease, 101:366-371.
Rashid, U., Wani, T. A., Irfan, M. and Bhat, N. A. (2023). Status and management of angular leaf spot disease of beans (Phaseolus vulgaris L.) caused by Phaeoisariopsis griseola (Sacc.) Ferraris. Indian Phytopathology, 76:473-481.
Rekanović, E., Mihajlović, M. and Potočnik, I. (2010). In vitro sensitivity of Fusarium graminearum (Schwabe) to difenoconazole, prothioconazole and thiophanate-methyl. Journal Pesticides and Phytomedicine 25:325-333.
Sánchez-Pale, J. R., Franco-Mora, O., Castillo-López, E. and Bartolo-Mendoza, I. (2022). Control of Botrytis cinerea Pers. in chrysanthemum (Chrysanthemum × morifolium) with wild vine extracts. In: V International Conference on Postharvest and Quality Management of Horticultural Products of Interest for Tropical Regions, 1340:231-234.
Satou, M., Sumitomo, K. and Chikuo, Y. (2013). Cultivar resistance, infection sources, and effective fungicides identified to control Chrysanthemum cutting rot caused by Plectosporium tabacinum. Journal of Plant Pathology, 79:168-174.
Sert Çelik, E., Özalp, T., Mıstanoğlu, İ. and Devran, Z. (2019). Identification of plant-parasitic nematodes associated with cut flowers. Journal of Plant Disease Protection, 126:409-420.
Singh, G. and Milne, K. S. (1974a). Field evaluation of fungicides for the control of chrysanthemum flower blight. New Zealand Journal of Experimental Agriculture, 2.
Singh, G. and Milne, K. S. (1974b). Laboratory evaluation of fungicides against fungi causing flower blight of chrysanthemums. New Zealand Journal of Experimental Agriculture, 2:181-183.
Singh, P. K. and Kumar, V. (2014). Fusarium wilt of chrysanthemum–problems and prospects. Plant Pathology & Quarantine, 4:33-42.
Sjahril, R., Jamaluddin, I., Nadir, M., Asman, Haring, F., Riadi, M., Larekeng, S. H., Mariani, T. S., Trisnawaty, A. R., Panga, N. J., Tambung, A., Chin, D. P. and Mii, M. (2022). Performance of transgenic chrysanthemum harbouring wasabi defensin gene for white rust disease resistance. HAYATI Journal of Biosciences, 29:621-631.
Smith, P. M. (1966). The chemical control of chrysanthemum petal blight caused by Itersonilia perplexans Derx. Annals of Applied Bilogy, 58:431-446.
Spanner, R., Taliadoros, D., Richards, J., Rivera-Varas, V., Neubauer, J., Natwick, M., Hamilton, O., Vaghefi, N., Pethybridge, S., Secor, G., Friesen, T. L., Stukenbrock, E. H. and Bolton, M. D. (2021). Genome-wide association and selective sweep studies reveal the complex genetic architecture of DMI fungicide resistance in Cercospora beticola. Genome Biology and Evolution, 13:209.
Stapel, O. and Guerrand, J. (2010). High efficacy of a possible plant elicitor and other phytostimulants against white rust (Puccinia horiana Henn.) in potted Chrysanthemum productions. Acta Horticulturae, 973:355-359.
Stricker, S. M., Tayviah, C. S., Gossen, B. D. and McDonald, M. R. (2021). Fungicide efficacy and timing for the management of Stemphylium vesicarium on onion. Can. Canadian Journal of Plant Pathology, 43:275-287.
Supakitthanakorn, S., Mochizuki, T., Vichittragoontavorn, K., Kunasakdakul, K., Thapanapongworakul, P. and Ruangwong, O.U. (2022). First characterisation of chrysanthemum virus B infecting chrysanthemum in Thailand and development of colourimetric RT-LAMP for rapid and sensitive detection. Folia Horticulturae, 34:151-161.
Taguiam, J. D., Evallo, E., Bengoa, J., Maghirang, R. and Balendres, M. A. (2020). Pathogenicity of Epicoccum sorghinum towards dragon fruits (Hylocereus species) and in vitro evaluation of chemicals with antifungal activity. Journal of Phytopathology, 168:303-310.
Thao, L. D., Anh, P. T., Trang, T. T. T., Khanh, T. N., Hien, L. T., Binh, V. T. P., Thanh, H. M. and Thanh, D. T. (2021). Fusarium falciforme, a pathogen causing wilt disease of chrysanthemum in Vietnam. New Disease Report, 43:e12013.
Vieira, W. A. D. S., Lima, W. G., Nascimento, E. S., Michereff, S. J., Reis, A., Doyle, V. P. and Câmara, M. P. S. (2017). Thiophanate-methyl resistance and fitness components of Colletotrichum musae isolates from banana in Brazil. Plant Disease, 101:1659-1665.
Walia, Y., Dhir, S. and Hallan, V. (2022). Molecular characterization of sequence variants of Chrysanthemum chlorotic mottle viroid from Himachal Pradesh, India. Indian Phytopathology, 75:1241-1244.
Wang, C. H., Tsai, Y. C., Tsai, I., Chung, C. L., Lin, Y. C., Hung, T. H., Suwannarach, N., Cheewangkoon, R., Elgorban, A. M. and Ariyawansa, H. A. (2021). Stemphylium leaf blight of Welsh onion (Allium fistulosum): An emerging disease in Sanxing, Taiwan. Plant Disease, 105:4121-4131.
Wang, W. H. and Chen, P. J. (2020). First report of a pin nematode (Paratylenchus dianthus) on Chrysanthemum in Taiwan. Plant Disease, 104:995-995.
Wojdyła, A. T. (2006). Falcon 460 EC in the control of foliage diseases of some ornamentals. Communications in agricultural and applied biological sciences, 71:1071-1079.
Wojdyła, A. T. (2007). Influence of strobilurin compounds on the development of Puccinia horiana. Communications in agricultural and applied biological sciences, 72:961-966.
Xu, X., Li, J., Yang, X., Zhang, L., Wang, S., Shen, G., Hui, B., Xiao, J., Zhou, C., Wang, X., Zhao, J. and Xiang, W. (2022). Epicoccum spp. causing maize leaf spot in Heilongjiang Province, China. Plant Disease, 106:3050-3060.
Yamaguchi, K.I ., Fukui, K. and Takahashi, M. (1998). Fungicide sensitivity of non-pathogenic Fusarium isolate MT0062, a potential biocontrol agent, and induction of benomyl-resistant mutants. Journal Pesticide Science, 23:407-409.
Yao, Q., Liu, Y., Liang, S., Li, C. and Li, Z. (2023). Identification of Epicoccum sorghinum as the agent of Hydrangea leaf spot and its sensitivity to fungicides. Journal of Phytopathology, 171:344-351.
Yusuf, E. S., Budiarto, K. and Rahardjo, I. B. (2019). Evaluation of Cladosporium sp. mycoparacites as biocontrol agents of white rust disease on chrysanthemum. AGRIVITA, 41:405-415.
Zhang, T., Cao, Q., Li, N., Liu, D. and Yuan, Y. (2020). Transcriptome analysis of fungicide-responsive gene expression profiles in two Penicillium italicum strains with different response to the sterol demethylation inhibitor (DMI) fungicide prochloraz. BMC Genomics, 21:1-16.
Zhao, S., Chen, X., Deng, S., Dong, X., Song, A., Yao, J., Fang, W. and Chen, F. (2016). The effects of fungicide, soil fumigant, bio-organic fertilizer and their combined application on chrysanthemum Fusarium wilt controlling, soil enzyme activities and microbial properties. Molecules, 21:526.