Association of FABP3 and LEPR gene polymorphisms with the drip loss trait of pork

Main Article Content

Nitipongsuwan, S.
Mekchay, S.

Abstract

Drip loss is a major parameter for the quality of pork which affects the economic perspective of premium-meat in the world’s pork industry. It is clear that the fatty acid binding protein3 (FABP3) gene is related to oxidation and glucose utilization in muscles whereas the leptin receptors (LEPR) gene is related to energy balance, and both genes affect pork quality. The objective of this study was to analyze the genetic polymorphisms of FABP3 and LEPR genes associated with the drip loss trait of pork. Longissimus dorsi muscle samples were taken from a total of 1,114 commercial pigs including purebred Duroc and [(Duroc × Large White) × Landrace] × Duroc. DNA was extracted by the Chelex® method. Drip loss was measured by the bag method based on gravitational technique. The FABP3 and LEPR genes were genotyped by the PCR-RFLP technique. It was found that the FABP3 gene showed significant association with the drip loss trait. The genotypes GC and CC of [(Duroc × Large White) × Landrace] × Duroc had the lowest drip loss. The LEPR gene was also associated with the drip loss trait. The animals of genotype TT had the lowest drip loss in Duroc but the genotype AA had the lowest drip loss in [(Duroc × Large White) × Landrace] × Duroc. Furthermore, the interaction between FABP3 and LEPR significantly affected drip loss. The animals with genotypes GGTT, GCTT and CCTT had the lowest drip loss in Duroc whereas the animals with genotypes GCAA, CCAA, GGAA, CCTT, GCTT,  and CCTA  had the lowest drip loss in [(Duroc × Large White) × Landrace] × Duroc. These results indicated the importance of FABP3 and LEPR genes to be used for the marker-assisted selection for the improvement of pork quality.

Article Details

How to Cite
Nitipongsuwan, S., & Mekchay, S. (2015). Association of FABP3 and LEPR gene polymorphisms with the drip loss trait of pork. International Journal of Agricultural Technology, 11(1), 69–76. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/5999
Section
Original Study

References

De Koning, D. J., Harlizius, B., Rattink, A. P., Groenen, M. A., Brascamp, E. W. and van Arendonk, J. A. M. (2001). Detection and characterization of quantitative trait loci for meat quality traits in pigs. Journal of Animal Science 79:2812-2819.

Dransfield, E. (1981). Eating quality of DFD beef. Current Topics in Veterinary Medicine and Animal Science 10:344-361.

Fox, J., Friendly, M. and Monette, G. (2009). Visualizing hypothesis tests in multivariate linear models: The heplots package for R. Computational Statistics 24:233-246.

Gerbens, F., Jansen, A., van Erp, A. J. M., Harders, F., Meuwissen, T. H. E., Rettenberger, G., Veerkamp, J. H. and te Pas, M. F. W. (1998). The adipocyte fatty acid-binding protein locus: Characterization and association with intramuscular fat content in pigs. Mammalian Genome 9:1022-1026.

Gerbens, F., van Erp, A. J. M., Harders, F. L., Verburg, F. J., Meuwissen, T. H. E., Veerkamp, J. H. and te Pas, M. F. W. (1999). Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. Journal of Animal Science 77:846-852.

Gerbens, F., de Koning, D. J., Harders, F. L., Meuwissen, T. H. E., Janss, L. L. G., Groenen, M. A., Veerkamp, J. H., van Arendonk, J. A. and te Pas, M. F. (2000). The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. Journal of Animal Science 78:552-559.

Gerbens, F., Rettenberge, G., Lenstra, J. A., Veerkamp, J. H. and te Pas, M. F. (1997). Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein. Mammalian Genome 8:328-331.

Hardie, D. G. and Sakamoto, K. (2006). AMPK: A Key Sensor of Fuel and Energy Status in Skeletal Muscle. Physiology 21:48-60.

Honikle, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science 49:447-457.

Huff-Lonergan, E. and Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Science 7:194-204.

Jennen, D. G. J., Brings, A. D., Liu, G., Juengst, H., Tholen, E., Jonas, E., Tesfaye, D., Schellander, K. and Phatsara, C. (2007). Genetic aspects concerning drip loss and water-holding capacity of porcine meat. Journal of Animal Breeding and Genetics 124:2-11.

Kusudo, T., Kontani, Y., Kataoka, N., Ando, F., Shimokata, H. and Yamashita, H. (2011). Fatty acid-binding protein 3 stimulates glucose uptake by facilitating AS160 phosphorylation in mouse muscle cells. Genes to Cells 16:681-691.

Li, X., Kim, S., Choi, J., Lee, Y., Lee, C., Choi, B., Kim, T., Choi, Y., Kim, J. and Kim, K. (2010). Investigation of polymorphisms and mRNA expression for variation in intramuscular fat content. Molecular Biology Reports 37:3931-3939.

Mackowski, M., Szymoniak, K., Szydlowski, M., Kamyczek, M., Eckert, R., Rozycki, M. and Switonski, M. (2005). Missense mutations in exon 4 of the porcine LEPR gene encoding extracellular domain and their association with fatness traits. Animal Genetics 36:135-137.

Malek, M., Dekkers, J. C. M., Lee, H. K., Bass, T. J., Prusa, K., Huff-Lonergan, E. and Rothschild, M. F. (2001). A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. meat and muscle composition. Mammalian Genome 12:630-636.

Maltin, C., Balcerzak, D., Tilley, R. and Delday, M. (2003). Determinants of meat quality: tenderness. Proceedings of the Nutrition Society 62:337-347.

Neuenschwander, S., Rettenberger, G., Meijerink, E., Jörg, H. and Stranzinger, G. (1996). Partial characterization of obesity gene (OBS) and its localization to chromosome 18 by somatic cell hybrids. Animal Genetics 27:275-278.

Ovilo, C., Oliver, A., Noguera, J. L., Clop, A., Barragan, C., Varona, L., Rodriguez, C., Toro, M., Sanchez, A., Perez-Encisco, M. and Silio, L. (2002). The test for positional candidate genes for body composition on pig chromosome 6. Genetics Selection Evolution 34:465-479.

Peeters, R. A., In't Groen, M. A. and Veerkamp, J. H. (1989). The fatty-acid-binding protein from human muscle. Arch Biochem Biophys 274:556-563.

Pierzchała, M., Pareek, C. H. and Kurył, J. (2006). Application of current genetic for improvement of quality of pork meat – a review. Polish Journal of Food and Nutrition Sciences 15/16:369-377.

Qu, Y. C., Deng, C. Y., Xiong, Y. Z., Zheng, R., Yu, L., Su, Y. H. and Liu, G. L. (2002). The construction of the genetic map and QTL locating analysis on chromosome 2 in swine. Yi Chuan Xue Bao 29:972-976.

Rybarczyk, A., Kmieć, M., Gardzielewska, J., Karamucki, T., Jakubowska, M., Terman, A. and Polasik, D. (2009). Effect of carcass meatiness level on meat quality of pigs monomorphiccat genes RYR1 and LEP. Polish Journal of Food Nutrition Sciences 59:325-328.

Schaap, F. G., Binas, B., Danneberg, H., van der Vusse, G. J. and Glatz, J. F. C. (1999). Impaired long-chain fatty acid utilization of cardiac myocytes isolated from mice lacking the heart-type fatty acid-binding protein gene. Circulation Research 85:329-337.

Su, Y. H., Xiong, Y. Z., Jiang, S. W., Zhang, Q., Lei, M. G., Zheng, R. and Deng, C. Y. (2004). Mapping quantitative trait loci for meat quality traits in Large White Meishan cross. Acta Genetica Sinica 31:132-136.

Sun, C., Wang, L., Jiang, D. E. and Zhang, B. (2009). Missense mutations in exon 2 of the porcine leptin receptor gene and their associations with litter size and body weight. Czech Journal of Animal Science 54:210-216.

Thomsen, H., Lee, H. K., Rothschild, M. F., Malek, M. and Dekker, J. C. M. (2004). Characterization of quantitative trait loci for growth and meat quality in across between commercial breeds of swine. Journal of Animal Science 82:2213-1128.

Treebak, J. T., Glund, S., Deshmukh, A., Klein, D. K., Long, Y. C., Jensen, T. E., Jørgensen, S. B., Viollet, B., Andersson, L., Neumann, D. Wallimann, T., Richter, E. A., Chibalin, A. V., Zierath, J. R. and Wojtaszewski, J. F. (2006). AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 55:2051-2058.

Veerkamp, J. H. and van Moerkerk, H. T. B. (1993). Fatty acid binding protein and its relation to fatty acid oxidation. Molecular and Cellular Biochemistry 123:101-106.

Degens, H., Veerkamp, J. H., van Moerkerk, H. T., Turek, Z., Hoofd, L. J. and Binkhorst, R. A. (1993). Metabolic capacity, fibre type area and capillarization of rat plantaris muscle. Effects of age, overload and training and relationship with fatigue resistance. International Journal of Biochemistry 25:1141-1148.

Vork, M. M., Glatz, J. F. C., Surtel, D. A. M., Knubben, H. J. M. and van der Vusse, G. J. (1991). A sandwich enzyme linked immuno-sorbent assay for the determination of rat heart fatty acid binding protein. Biochimica et Biophysica Acta 1075:199-205.

Walsh, P. S., Metzger, D. A. and Higuchi, R. (1991). Chelex® 100 as a medium for simple extraction of DNA for PCR- based typing from forensic material. BioTechniques 10:506-513.