What the soil organic matter term has to offer in a survey bibliographic in the last decade using science direct database
Main Article Content
Abstract
A bibliographic survey of papers that include the term soil organic matter (SOM) and the occurrence of this term in papers in the last decade were investigated. For this purpose, it was described the composition, importance, and characterization of SOM. In sequence, the quantitative analysis to determine the scientific production, by year, including the term among 2010 and 2019 was performed by using the Science Direct database. After, the qualitative analysis of the data was included the description of the 10 main journals, and the statistics involving publications by this journal. Finally, a new bibliographic survey was realized using the advanced search and were included in the author affiliation the South America countries, and other countries. The results reinforced the importance of the SOM as soil component. In summary, the interest in research has increased in the past decade and around the globe, especially in China which published the largest number of papers among 2010 and 2019. Last year (2019) only, there were published more than 5,000 articles. Other countries, such as Ecuador, Peru, Colombia, Brazil, and India, also had a considerable increase in scientific production, during the last 10 years, involving the term SOM
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abakumov, E., Lodygin, E. and Tomashunas, V. (2015). 13C NMR and ESR characterization of Humic substances isolated from soils of two Siberian Arctic islands. International Journal of Ecology, 1-7.
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E. and Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348.
Analytics, C. (2018). Research in Brazil: a report for CAPES by Clarivate Analytics.
Aranda, V., Ayora-Cañada, M. J., Domínguez-Vidal, A., Martín-García, J. M., Calero, J., Delgado, R., Verdejo, T. and González-Vila, F. J. (2011). Effect of soil type and management (organic vs. conventional) on soil organic matter quality in olive groves in a semi-arid environment in Sierra Mágina Natural Park (S Spain). Geoderma, 164:54-63.
Baldock, J. A. (2000). Nelson, P. N. Soil organic matter. In Handbook of soil science, 25-84.
Baldock, J. A., Hawke, B., Sanderman, J. and Macdonald, L. M. (2014). Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra. Soil Research, 51:577-595.
Barančíková, G., Jarzykiewicz, M., Gömöryová, E., Tobiašová, E. and Litavec, T. (2018). Changes in forest soil organic matter quality affected by windstorm and wildfire. Journal of Soils and Sediments, 18:2738-2747.
Baumann, K., Schöning, I., Schrumpf, M., Ellerbrock, R. H. and Leinweber, P. (2016). Rapid assessment of soil organic matter: Soil color analysis and Fourier transform infrared spectroscopy. Geoderma, 278:49-57.
Bayer, C., Mielniczuk, J., Martin-Neto, L. and Ernani, P. R. (2002). Stocks and humification degree of organic matter fractions as affected by no-tillage on a subtropical soil. Plant and Soil, 238:133-140.
Benbi, D. K., Boparai, A. K. and Brar, K. (2014). Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter. Soil Biology and Biochemistry, 70:183-192.
Cambardella, C. A. and Elliott, E. T. (1992). Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Science Society of America Journal, 56:777-783.
Cao, X., Olk, D. C., Chappell, M., Cambardella, C. A., Miller, L. F. and Mao, J. (2011). Solid-State NMR analysis of soil organic matter fractions from integrated physical-chemical extraction. Soil Science Society of America Journal, 75:1374-1384.
Carmo, D. L. do. and Silva, C. A. (2012). Métodos de quantificação de carbono e matéria orgânica em resíduos orgânicos. Revista Brasileira de Ciência do Solo, 36:1211-1220.
Carra, J. B., Fabris, M. and Santos-Tonial, L. M. (2017). The potential of chemical and spectroscopy characterization in the analysis and classification of horizons from tropical soil. Revista Virtual de Quimica, 9:1813-1824.
Carra, Jéssica Bassetto, Fabris, M., Dieckow, J., Brito, O. R., Vendrame, P. R. S. and Macedo Dos Santos Tonial, L. (2019). Near-Infrared Spectroscopy Coupled with Chemometrics Tools: A Rapid and Non-Destructive Alternative on Soil Evaluation. Communications in Soil Science and Plant Analysis, 50:421-434.
Carrero, J. A., Goienaga, N., Olivares, M., Martinez-Arkarazo, I., Arana, G. and Madariaga, J. M. (2012). Raman spectroscopy assisted with XRF and chemical simulation to assess the synergic impacts of guardrails and traffic pollutants on urban soils. Journal of Raman Spectroscopy, 43:1498-1503.
Chen, Y., Senesi, N. and Schnitzer, M. (1977). Information provided on humic substances by E4/E6 Ratios. Soil Science Society of America Journal, 41:352-358.
Cheng, X., Yang, Y., Li, M., Dou, X. and Zhang, Q. (2013). The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China. Plant and Soil, 366:415-424.
Christensen, B. T. (2001). Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52:345-353.
Christensen, B. T. (1995). Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: Revision of Model Structure. In Evaluation of Soil Organic Matter Models, 424 p.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S. and Thornton, P. (2013). Carbon and other biogeochemical cycles supplementary material. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 465-570.
Courtier-Murias, D., Simpson, A. J., Marzadori, C., Baldoni, G., Ciavatta, C., Fernández, J. M., López-de-Sá, E. G. and Plaza, C. (2013). Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy. Agriculture, Ecosystems and Environment, 171:9-18.
De Andrade, J. B. and Galembeck, F. (2009). QUALIS: Quo vadis?. Quimica Nova, 32:1- 5.
Dhaliwal, G. S., Gupta, N., Kukal, S. S. and Meetpal-Singh (2014). Standardization of Automated Vario EL III CHNS Analyzer for Total Carbon and Nitrogen Determination in Plants. Communications in Soil Science and Plant Analysis, 45:1316-1324.
Dhaliwal, S. S., Naresh, R. K., Mandal, A., Singh, R. and Dhaliwal, M. K. (2019). Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators, 1-2:100007.
Dick, D. P., Santos, J. H. Z. and Ferranti, E. M. (2003). Chemical characterization and infrared spectroscopy of soil organic matter from two southern brazilian soils. Revista Brasileira de Ciência do Solo, 27:29-39.
Dudal, R. and Deckers, J. (1993). Soil organic matter in relation to soil productivity. In Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, 377-388.
Duval, M. E., Galantini, J. A., Iglesias, J. O., Canelo, S., Martinez, J. M. and Wall, L. (2013). Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil and Tillage Research, 131:11-19.
Elliott, E. T. and Cambardella, C. A. (1991). Organic matter and nutrient cycling Physical separation of soil organic matter, 34:407-419.
Fabris, M., Carra, J. B., Merlin, N. and Tonial, L. M. dos S. (2019). Fourier transform infrared spectroscopy and chemometrics in the characterization of soil organic matter. In A Preservação do Meio Ambiente e o Desenvolvimento Sustentável, Editora Atena, cap. 2, p.118-127.
Feller, C., Blanchart, E., Bernoux, M., Lal, R. and Manlay, R. (2012). Soil fertility concepts over the past two centuries: The importance attributed to soil organic matter in developed and developing countries. Archives of Agronomy and Soil Science, 58:S3-S21.
Fernandes, R. B. A., Junior, I. A. de C., Junior, E. S. R. and de Sá Mendonça, E. (2015). Comparison of different methods for the determination of total organic carbon and humic substances in Brazilian soils. Revista Ceres, 62:496-501.
Ferreira, D. S., Pallone, J. A. L. and Poppi, R. J. (2015). Fourier transform near-infrared spectroscopy (FT-NIRS) application to estimate Brazilian soybean [Glycine max (L.) Merril] composition. Food Research International, 51:53-58.
Franzluebbers, A. J. (2002). Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research, 66:95-106.
Gao, L., Wang, B., Li, S., Han, Y., Zhang, X., Gong, D., Ma, M., Liang, G., Wu, H., Wu, X., Cai, D. and Degré, A. (2019). Effects of different long-term tillage systems on the composition of organic matter by 13C CP/TOSS NMR in physical fractions in the Loess Plateau of China. Soil and Tillage Research, 194:104321.
Gavinelli, E., Feller, C., Larré‐Larrouy, M. C., Bacye, B., Djegui, N. and Nzila, J. de D. (1995). A routine method to study soil organic matter by particle‐size fractionation: Examples for tropical soils. Communications in Soil Science and Plant Analysis, 26:1749-1760.
Guimarães, D. V., Gonzaga, M. I. S., da Silva, T. O., da Silva, T. L., da Silva Dias, N. and Matias, M. I. S. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126:177-182.
Henry, D. G., Jarvis, I., Gillmore, G. and Stephenson, M. (2019). Earth-Science Reviews Raman spectroscopy as a tool to determine the thermal maturity of organic matter : Application to sedimentary , metamorphic and structural geology. Earth-Science Reviews, 198:102936.
Imaz, M. J., Virto, I., Bescansa, P., Enrique, A., Fernandez-Ugalde, O. and Karlen, D. L. (2010). Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland. Soil and Tillage Research, 107:17-25.
Jha, P., Biswas, A. K., Lakaria, B. L., Saha, R., Singh, M. and Rao, A. S. (2014). Predicting Total Organic Carbon Content of Soils from Walkley and Black Analysis. Communications in Soil Science and Plant Analysis, 45:713-725.
Jiménez-González, M. A., Álvarez, A. M., Carral, P. and Almendros, G. (2019). Chemometric assessment of soil organic matter storage and quality from humic acid infrared spectra. Science of the Total Environment, 685:1160-1168.
Kalbitz, K., Geyer, W. and Geyer, S. (1999). Spectroscopic properties of dissolved humic substances - A reflection of land use history in a fen area. Biogeochemistry, 47:219-238.
Kellner, A. W. A. (2017). The Qualis system: a perspective from a multidisciplinary journal. Anais da Academia Brasileira de Ciências, 89:1339-1342.
Khiste, G. and Awate, A. P. (2018). Mapping of the Literature on “ Information Literacy ” by Using Science Direct during 2008-2017. Current Global Reviewer, 1:7-13.
Kögel-Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology & Biochemistry, 34:139-162.
Lal, R. (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy & Environmental Science, 1:86-100.
Leyton, P., Córdova, I., Lizama-Vergara, P. A., Gómez-Jeria, J. S., Aliaga, A. E., Campos-Vallette, M. M., Clavijo, E., García-Ramos, J. V. and Sanchez-Cortes, S. (2008). Humic acids as molecular assemblers in the surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Vibrational Spectroscopy, 46:77-81.
Manlay, R. J., Feller, C. and Swift, M. J. (2007). Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agriculture, Ecosystems and Environment, 119:217-233.
Martins, T., Saab, S. C., Milori, D. M. B. P., Brinatti, A. M., Rosa, J. A., Cassaro, F. A. M. and Pires, L. F. (2011). Soil organic matter humification under different tillage managements evaluated by Laser Induced Fluorescence (LIF) and C/N ratio. Soil and Tillage Research, 111:231-235.
McDowell, M. L., Bruland, G. L., Deenik, J. L., Grunwald, S. and Knox, N. M. (2012). Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma, 189-190:312-320.
Milori, D. M. B. P.; Martin-Neto, L.; Bayer, C.; Mielniczuk, J. and Bagnato, V. S. (2002). Humification degree of soil humic acids determined by fluorescence spectroscopy. Soil Science, 167:739-749.
Milori, D. M. B. P., Galeti, H. V. A., Martin-Neto, L., Dieckow, J., González-Pérez, M., Bayer, C. and Salton, J. (2006). Organic Matter Study of Whole Soil Samples Using Laser-Induced Fluorescence Spectroscopy. Soil Science Society of America Journal, 70:57-63.
Nicolodelli, G., Marangoni, B. S., Cabral, J. S., Villas-Boas, P. R., Senesi, G. S., dos Santos, C. H., Romano, R. A., Segnini, A., Lucas, Y., Montes, C. R. and Milori, D. M. B. P. (2014). Quantification of total carbon in soil using laser-induced breakdown spectroscopy: a method to correct interference lines. Applied Optics, 53:2170-2176.
Nogueira, B. A., Merlin, N., Macedo, P., Alfredo, J., Saab, C. and Santos-Tonial, L. M. (2018). Soil Managment Practices: Chemical and Spectroscopic Characterization. Scientia Agraria Paranaensis, 17:119-126.
Nyawade, S. O., Karanja, N. N., Gachene, C. K. K., Gitari, H. I., Schulte-Geldermann, E. and Parker, M. L. (2019). Short-term dynamics of soil organic matter fractions and microbial activity in smallholder potato-legume intercropping systems. Applied Soil Ecology, 142:123-135.
Oyama, B. S., Andrade, M. D. F., Herckes, P., Dusek, U., Röckmann, T. and Holzinger, R. (2016). Chemical characterization of organic particulate matter from on-road traffic in São Paulo, Brazil. Atmospheric chemistry and physics, 16:14397-14408.
Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N. D. and Calderón, F. J. (2014). Soil chemical insights provided through vibrational spectroscopy. In Advances in agronomy, 126:1-148. Academic Press.
Pereira, M. G., Valladares, G. S., Cunha Dos Anjos, L. H., De Melo Benites, V., Espíndula, A. and Ebeling, A. G. (2006). Organic carbon determination in histosols and soil horizons with high organic matter content from Brazil. Scientia Agricola, 63:187-193.
Ping, C. L., Michaelson, G. J., Dai, X. Y. and Candler, R. (2001). Characterization of soil organic matter. In Advances in Soil Science - Assessment Methods for Soil Carbon, 273-284.
Pinheiro, É. F. M., de Campos, D. V. B., de Carvalho Balieiro, F., dos Anjos, L. H. C. and Pereira, M. G. (2015). Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agricultural Systems, 132:35-39.
Plante, A. F., Conant, R. T., Stewart, C. E., Paustian, K. and Six, J. (2006). Impact of Soil Texture on the Distribution of Soil Organic Matter in Physical and Chemical Fractions. Soil Science Society of America Journal, 70:287-296.
Plaza, C., Fernández, J. M., Pereira, E. I. P. and Polo, A. (2012). A comprehensive method for fractionating soil organic matter not protected and protected from decomposition by physical and chemical mechanisms. Clean - Soil, Air, Water, 40:134-139.
Ribeiro-Soares, J., Cançado, L. G., Falcão, N. P. S., Martins Ferreira, E. H., Achete, C. A. and Jorio, A. (2013). The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils. Journal of Raman Spectroscopy, 44:283-289.
Riffaldi, R. and Schnitzer, M. (1972). Effects of diverse experimental conditions on ESR spectra of humic substances. Geoderma, 8:1-10.
Saab, S. D. C. and Martin-Neto, L. (2007). Anéis aromáticos condensados e relação E 4/E6: Estudo de ácidos húmicos de gleissolos por RMN de 13C no estado sólido utilizando a técnica CP/MAS desacoplamento defasado. Quimica Nova, 30:260-263.
Santos, L. M. dos, Simões, M. L., de Melo, W. J., Martin-Neto, L. and Pereira-Filho, E. R. (2010). Application of chemometric methods in the evaluation of chemical and spectroscopic data on organic matter from Oxisols in sewage sludge applications. Geoderma, 155:121-127.
Sato, J. H., Figueiredo, C. C. de, Marchão, R. L., Madari, B. E., Benedito, L. E. C., Busato, J. G. and Souza, D. M. de. (2014). Methods of soil organic carbon determination in Brazilian savannah soils. Scientia Agricola, 71:302-308.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Kleber, M. and Ko, I. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478:49-56.
Segnini, A., Dos Santos, L. M., Da Silva, W. T. L., Martin-Neto, L., Borato, C. E., De Melo, W. J. and Bolonhezi, D. (2008). Estudo comparativo de métodos para a determinação da concentração de carbono em solos com altos teores de Fe (Latossolos). Quimica Nova, 31:94-97.
Segnini, A., Posadas, A., Quiroz, R., Milori, D. M. B. P., Saab, S. C., Neto, L. M. and Vaz, C. M. P. (2010). Spectroscopic Assessment of Soil Organic Matter in Wetlands from the High Andes. Soil Science Society of America Journal, 74:2246-2253.
Sohi, S. P., Mahieu, N., Arah, J. R. M., Powlson, D. S., Madari, B. and Gaunt, J. L. (2001). A Procedure for Isolating Soil Organic Matter Fractions Suitable for Modeling. Soil Science Society of America Journal, 65:1121-1128.
Soykan, E. and Uzunboylu, H. (2015). New trends on mobile learning area : The review of published articles. World Journal on Educational Technology, 7:31-41.
Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
Strehl, L., Calabró, L., Souza, D. O. and Amaral, L. (2016). Brazilian science between national and foreign journals: Methodology for analyzing the production and impact in emerging scientific communities. PLoS ONE, 11:1-15.
Sutton, R. and Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science and Technology, 39:9009-9015.
Swift, M. J. and Woomer, P. (1992). Organic matter and the sustainability of agricultural systems: definition and measurement. In Dynamics of Soil Organic Matter in Relation to the Sustainability of Agricultural System, 3-18.
Swift, R. S. (1996). Organic matter characterization. Methods of soil analysis: Part 3 chemical methods, 5:1011-1069.
van Wesemael, B., Chartin, C., Wiesmeier, M., von Lützow, M., Hobley, E., Carnol, M., Krüger, I., Campion, M., Roisin, C., Hennart, S. and Kögel-Knabner, I. (2019). An indicator for organic matter dynamics in temperate agricultural soils. Agriculture, Ecosystems and Environment, 274:62-75.
Volpato, G. L. and Freitas, E. G. (2003). Chall enge in scie nt ific publ ic at ion. Pesqui sa Odontol ógica Brasileira, 17(Supl 1):49-56.
Wagner, C. S. and Jonkers, K. (2017). Open countries have strong science. Nature, 550:1-3.
Walkley, A. and Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37:29-38.
Wander, M. (2004). Soil Organic Matter Fractions and Their Relevance to Soil Function. Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, FL, pp.67-102.
Wendling, B., Jucksch, I., Mendonça, E. S. and Alvarenga, R. C. (2010). Organic-matter pools of soil under pines and annual cultures. Communications in Soil Science and Plant Analysis, 41:1707-1722.
Woomer, P. L., Martin, A., Albretch, A., Resck, D.V. S. and Scharpenseel, H. W. (1994). The importance of and management of soil organic matter in the tropics. In: P.L. Woomer & M.J. Swift (Eds.) The Biological Management of Tropical Soil Fertility, John Wiley and Sons, Chichester, pp.47-80.
Xing, Z., Du, C., Zeng, Y., Ma, F. and Zhou, J. (2016). Characterizing typical farmland soils in China using Raman spectroscopy. Geoderma, 268:147-155.
Yeasmin, S., Singh, B., Smernik, R. J. and Johnston, C. T. (2020). Effect of land use on organic matter composition in density fractions of contrasting soils: A comparative study using 13C NMR and DRIFT spectroscopy. Science of The Total Environment, 726:138395.
Yoemans, J. C. and Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications on Soil Science and Plant, 19:1467-1476.
Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T. M., Miltner, A. and Schroth, G. (1997). Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 79:117-161.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B. and Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38:45-50.