Quorum sensing inhibition activities of Philippine ethnobotanicals against virulence factors in Staphylococcus aureus

Main Article Content

Barrogo, K. N.
Jacinto, W. R.
Cruz, K. G.

Abstract

Quorum sensing (QS) and quorum sensing-inhibition (QSI) compounds hold a promising approach in combatting pathogenic diseases without the development of resistant strains. The global concern on rising antibiotic resistance paved the way for tapping natural products for their QSI activities.  Natural products are ideal sources of QSI compounds that have the potential to inhibit QS regulation in bacteria. Ten ethnobotanicals namely Ageratina adenophora (Spreng.) R.M.King & H.Rob. (Panawel), Alstonia scholaris (L.) R. Br. (Palay), Ayapana triplinervis (Vahl) R.M.King & H.Rob. (Pantallion), Bidens pilosa L. (Anwad), Cestrum nocturnum L. (Dama de noche), Derris elliptica (Wall.) Benth. (Opay), Oreocnide trinervis (Wedd.) Miq. (Lal-latan), Pittosporum pentandrum (Blanco) Merr. (Lahwik), Sarcandra glabra (Thunb.) Nakai (Hag-ob), and Lipang daga (without known scientific name) were evaluated for the occurrence of QSI activity against Staphylococcus aureus PNCM 1582. Disk diffusion assay was tested the antibacterial activity of the methanolic extracts. In the absence of antibacterial activity, the methanolic extracts that were incorporated into the growth media were evaluated for QSI against the expression of virulence factors; DNase and α-hemolysin, of S. aureus PNCM 1582. Three methanolic extracts, B. pilosa, C. nocturnum, and P. pentandrum, showed antimicrobial activity against S. aureus PNCM 1582. Extracts of O. trinervis and D. elliptica showed QSI against DNase production. No methanolic extracts inhibited the α-hemolysin production in S. aureus PNCM 1582. The result represented possibilities for future studies on the biological activities of these plants. These plants are probable sources of natural products against QS to develop drugs against bacterial pathogens without developing resistance

Article Details

How to Cite
Barrogo, K. N., Jacinto, W. R., & Cruz, K. G. (2021). Quorum sensing inhibition activities of Philippine ethnobotanicals against virulence factors in Staphylococcus aureus. International Journal of Agricultural Technology, 17(4), 1305–1316. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6143
Section
Original Study

References

Abbas-Ali, B. and Coleman, G. (1977). The characteristics of extracellular protein secretion by Staphylococcus aureus (Wood 46) and their relationship to the regulation of α-toxin formation. Microbiology, 99:277-282.

Al‐Reza, S. M., Rahman, A. and Kang, S. C. (2009). Chemical composition and inhibitory effect of essential oil and organic extracts of Cestrum nocturnum L. on food‐borne pathogens. International journal of food science & technology, 44:1176-1182.

Brandão, M. G. L., Krettli, A. U., Soares, L. S. R., Nery, C. G. C. and Marinuzzi, H. C. (1997). Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds. Journal of ethnopharmacology, 57:131-138.

Brandão, M. G. L., Nery, C. G. C., Mamão, M. A. S. and Krettli, A. U. (1998). Two methoxylated flavone glycosides from Bidens pilosa. Phytochemistry, 48:397-399.

Bronner, S., Monteil, H. and Prévost, G. (2004). Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS microbiology reviews, 28:183-200.

Chang, M. H., Wang, G. J., Kuo, Y. H. and Lee, C. K. (2000). The low polar constituents from Bidens pilosa L. var. minor (Blume) Sherff. Journal of the Chinese Chemical Society, 47:1131-1136.

Chatterjee, S. K., Bhattacharjee, I. and Chandra, G. (2007). Bactericidal activities of some common herbs in India. Pharmaceutical biology, 45:350-354.

Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., Pelczer, I., Bassler, B. L. and Hughson, F. M. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415:545-549.

Chenia, H. Y. (2013). Anti-quorum sensing potential of crude Kigelia africana fruit extracts. Sensors, 13:2802-2817.

Chiang, Y. M., Chuang, D. Y., Wang, S. Y., Kuo, Y. H., Tsai, P. W. and Shyur, L. F. (2004). Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. Journal of Ethnopharmacology, 95:409-419.

Coleman, G. and Abbas-Ali, B. (1977). Comparison of the patterns of increased in alpha-toxin and total extracellular protein by Staphylococcus aureus (Wood 46) grown in media supporting widely differing growth characteristics. Infection and immunity, 17:278-281.

Deba, F., Xuan, T. D., Yasuda, M. and Tawata, S. (2008). Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food control, 19:346-352.

Gordon, R. J. and Lowy, F. D. (2008). Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clinical infectious diseases, 46:S350-S359.

Huang, L., Zhang, X., Xiao, H., Heyang, Y. E. and Zeng, J. (2006). Analgesic effect of Cestrum nocturnum L. extract on mice. Chinese Journal of Tissue Engineering Research, 10:172-174.

Khan, M. A., Inayat, H., Khan, H., Saeed, M. and Khan, I. (2011). Antimicrobial activities of the whole plant of Cestrum nocturnum against pathogenic microorganisms. African Journal of Microbiology Research, 5:612-616.

Khare, C. P. (2008). Indian medicinal plants: an illustrated dictionary. Springer Science & Business Media.

Lee, J. H., Park, J. H., Cho, M. H. and Lee, J. (2012). Flavone reduces the production of virulence factors, staphyloxanthin and α-hemolysin, in Staphylococcus aureus. Current microbiology, 65:26-732.

Lyon, G. J. and Novick, R. P. (2004). Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides, 25:1389-1403.

Madigan, M. T., Martinko, J. M. and Parker, J. (2003). Microbial growth. Brock biology of microorganisms, pp.137-166.

Novick, R. P. (2003). Autoinduction and signal transduction in the regulation of staphylococcal virulence. Molecular microbiology, 48:1429-1449.

Ortez, J. H. and Rankin, I. D. (2006). Manual of Antimicrobial Susceptibility Testing, American Society for Microbiology; Marie, B.C., Ed.; ASM Press: Washington, pp.39-62.

Qazi, S. B., Middleton, B., Muharram, S. H., Cockyane, A., Hill, P., O’Shea, P., Chhabra, S. R., Camara, M. and Williams, P. (2006). N-acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus. Infection and Immunity, 910-919.

Rabe, T. and Van Staden, J. (1997). Antibacterial activity of South African plants used for medicinal purposes. Journal of ethnopharmacology, 56:81-87.

Redl, K., Breu, W., Davis, B. and Bauer, R. (1994). Anti-inflammatory active polyacetylenes from Bidens campylotheca. Planta Medica, 60:58-62.

Rezaei, A., Oyong, G. G., Borja, V. B., Inoue, M., Abe, T., Tamamura, R., Nagatsuka, H., Setsu, K. and Buery, R. R. (2011). Molecular screening of anti-quorum sensing capability of Salvadora persica on Enterococcus faecalis. Journal of Hard Tissue Biology, 20:115-124.

Rojas, J. J., Ochoa, V. J., Ocampo, S. A. and Muñoz, J. F. (2006). Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. BMC complementary and alternative medicine, 6:1-6.

Sarker, S. D., Bartholomew, B., Nash, R. J. and Robinson, N. (2000). 5-O-methylhoslundin: An unusual flavonoid from Bidens pilosa (Asteraceae). Biochemical Systematics and Ecology, 28:591-593.

Sashida, Y., Ogawa, K., Kitada, M., Karikome, H., Mimaki, Y. and Shimomura, H. (1991). New aurone glucosides and new phenylpropanoid glucosides from Bidens pilosa. Chemical and Pharmaceutical Bulletin, 39:709-711.

Srisawat, S. (2007). Effect of some Thai medicinal plant extracts on antibacterial activity of periodontopathic bacteria and their anti-inflammatory activity and toxicity to gingival connective tissue fibroblast (Doctoral dissertation, Prince of Songkla University).

Tan, L. Y., Yin, W. F. and Chan, K. G. (2013). Piper nigrum, Piper betle and Gnetum gnemon-Natural Food Source with Anti-Quorum Sensing Properties. Sensors, 13:3975-3985.

Thorington, R. W., Thorington Jr, R. W. and Ferrell, K. E. (2006). Squirrels: the animal answer guide. JHU press.

Ubillas, R. P., Mendez, C. D., Jolad , S. D., Luo, J., King, S. R., Carlson, T. J. and Fort, D. M. (2000). Antihyperglycemic acetylenic glucosides from Bidens pilosa. Planta Medica, 66:82-83.

Undan, J. R., Cruz, K. J., Gandalera, E. E., Abella, E. A., David, E. S., Valentino, M. J. G. and Reyes, R. G. (2014). An Ethnobotanical Expedition of Plants with Pharmacological Potential Used by the Igorot Tribe of Imugan, Sta. Fe, Nueva Vizcaya, Philippines. Central Luzon State University, Science City of Muñoz, Nueva Ecija. (Unpublished).

Uwaezuoke, J. C. and Aririatu, L. E. (2004). A survey of antibiotic resistant Staphylococcus aureus strains from clinical sources in Owerri. Journal of Applied Sciences and Environmental Management, 8:67-69.

Vandenesch, F., Lina, G. and Henry, T. (2012). Staphylococcus aureus Hemolysins, bi-component Leukocidins, and Cytolytic Peptides: A Redundant Arsenal of Membrane-Damaging Virulence Factors? Front Cell Infect Microbiology, 2:12.

Vital, P. G. and Rivera, W. L. (2011). Antimicrobial activity, cytotoxicity, and phytochemical screening of Voacanga globosa (Blanco) Merr. leaf extract (Apocynaceae). Asian Pacific journal of tropical medicine, 4:824-828.

Wang, J., Yang, H., Lin, Z. W. and Sun, H. D. (1997). Flavonoids from Bidens pilosa var. radiata. Phytochemistry, 46:1275-1278.

Wilkinson, B. J. (1997). In: Crossley KB, Archer GL, eds. The Staphylococci in Human Disease. New York: Churchill Livingstone, pp.1-38.

Zarringhalam, M., Zaringhalam, J., Shadnoush, M., Safaeyan, F. and Tekieh, E. (2013). Inhibitory effect of black and red pepper and thyme extracts and essential oils on enterohemorrhagic Escherichia coli and DNase activity of Staphylococcus aureus. Iranian journal of pharmaceutical research: IJPR, 12:363.

Zulueta, M. C. A., Tada, M. and Ragasa, C. Y. (1995). A diterpene from Bidens pilosa. Phytochemistry, 38:1449-1450.