Changes in biochemical and antioxidant enzymes activities play significant role in drought tolerance in soybean

Main Article Content

Mishra, N.
Tripathi, M. K.
Tripathi, N.
Tiwari, S.
Gupta, N.
Sharma, A.
Shrivastav, M. K.

Abstract

Soybean genotypes were grouped into two clusters on the basis of biochemical profiling, anti-oxidant enzyme activities and protein profiling. Biochemical and antioxidant enzyme activity analysis among 53 genotypes revealed the presence of drought tolerance traits in three genotypes viz., JS97-52, RVS-14 and JS95-60. The result obtained may contribute towards improvement of soybean genotypes with the development of drought tolerant varieties with the applications of conventional as well as molecular breeding approaches. These findings also provided a base for further research to investigate the drought tolerance mechanism in soybean crop using advanced biotechnological tools

Article Details

How to Cite
Mishra, N., Tripathi, M. K., Tripathi, N., Tiwari, S., Gupta, N., Sharma, A., & Shrivastav, M. K. (2021). Changes in biochemical and antioxidant enzymes activities play significant role in drought tolerance in soybean. International Journal of Agricultural Technology, 17(4), 1425–1446. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6228
Section
Original Study

References

Aebi, H. E. (1983). Catalase. In "method of enzymatic analysis", VCH, Weinheim, Germany-Deerfield, FL, 3:273-286.

Akitha-Devi, M. K. and Giridhar, P. (2015). Variations in physiological response, lipid peroxidation, antioxidant enzyme activities, proline and isoflavones content in soybean varieties subjected to drought stress. Proceedings of the National Academy of Sciences, 85:35-44.

Almeselmani, M., Saud, A., AI-Zubi, K., Abdullah, F., Hareri, F., Nassan, M., Ammar, M. A. and Kanbar, O. (2012). Physiological performance of different durum wheat varieties grown under rainfed condition. Global Journal of Science Frontier Research, 12:55-63.

Anjum, S. A., Xie, X., Wang, L., Saleem, M. F., Chen, M. and Wang, L. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6:2026-2032.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenoxidase in Betavulgaris. Plant Physiology, 24:1-15.

Arumingtyas, E. L. and Savitri, E. S. (2014). Identification and characterization of drought stress protein on soybean (Glycine max L. Merr). Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5:789-796.

Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39:205-207.

Blackman, S. A., Obendorf, R. L. and Leopold, A. C. (1995). Desiccation tolerance in developing soybean seeds: Th e role of stress proteins. Plant Physiology, 93:630-638.

Blokhina, O., Virolainen, E. and Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91:179-194.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72:248-254.

Buezo, S. Á., Moran, J. F., Soba, D. and Aranjuelo, I. (2018). Drought tolerance response of high‐yielding soybean varieties to mild drought: physiological and photochemical adjustments. Physiologia Plantarum, https://doi.org/10.1111/ppl.12864.

Chelikani, P., Fita, I. and Loewen, P. C. (2004). Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences, 61:192-208.

Choudhary, M. L., Tripathi, M. K., Tiwari, S., Pandya, R. K., Gupta, N., Tripathi, N. and Parihar, P. (2021). Screening of pearl millet [Pennisetum glaucum (L.) R. Br.] germplam lines for drought tolerance based on morpho-physiological traits and SSR markers. Current Journal of Applied Science and Technology, 40:46-63.

Correa-Aragunde, N., Foresi, N., Delledonne, M. and Lamattina, L. (2013). Auxin induces redox regulation of ascorbate peroxidase 1 activity by S- nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. Journal of Experimental Botany, 64:3339-49.

Chug, V., Kaur, N. and Gupta, A. K. (2011). Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against water logging. Indian Journal of Biochemistry & Biophysics, 48:346-52.

Dhanda, S. S., Sethi, G. S. and Behl, R. K. (2004). Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy and Crop Science, 190:6-12.

Farooq, S. and Azam, F. (2002). Co-existence of salt and drought tolerance in Triticaceae. Hereditas, 135:205-210.

Gardner-Outlaw, T. and Engelman, R. (1997). Sustaining water, easing scarcity: A second update. Washington, USA: Population Action International.

Garg, B., Jaiswal, J. P., Misra, S., Tripathi, B. N. and Prasad, M. (2012). A comprehensive study on dehydration-induced antioxidative responses during germination of Indian bread wheat (Triticum aestivum L.emThell) cultivars collected from different agroclimatic zones. Physiology and Molecular Biology of Plants, 18:217-228.

George, S., Minhas, N. M., Jatoi, S. A., Siddiqui, S. U. and Ghafoor, A. (2015). Impact of polyethylene glycol on proline and membrane stability index for water stress regime in tomato (solarium lycopersicum). Pakistan Journal of Botany, 47:835- 844.

Ghorbanli, M., Gafarabad, M., Amirkian, T. and Mamaghani, B. A. (2012). Investigation of praline, total protein, chlorophyll, ascorbate and dehydro-ascorbate changes under drought stress in Akria and Mobil tomato cultivars. Irnian Journal of Plant Physiology, 3:651-658.

Gupta, N., Tiwari, S. Tripathi, M. K. and Bhagyawant, S. S. (2021). Antinutritional and protein-based profiling of diverse desi and wild chickpea accessions. Current Journal of Applied Science and Technology, 40:7-18.

Gurrieri, L., Merico, M., Trost, P., Forlani, G. and Sparla, F. (2020). Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology, 9:367; doi:10.3390/biology9110367.

Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., Korff, M., Varshney, R. K., Graner, A. and Valkoun, J. (2009): Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60:3531-3544.

Hossain, M. M., Lam, H. M. and Zhang, J. (2015). Responses in gas exchange and water status between drought-tolerant and susceptible soybean genotypes with ABA application. The Crop Journal, 3:500-506.

Kachare, S. (2017). Studies on morpho-physiological changes and gene expression under drought condition in soybean [Glycine max (L.) Merrill]. (Ph. D Thesis), JNKVV, Jabalpur.

Kachare, S., Tiwari, S., Tripathi N. and Thakur V. V. (2019). Assessment of genetic diversity of soybean (Glycine max (L.) Merr.) genotypes using qualitative traits and microsatellite makers. Agricultural Research, DOI: 10.1007/s40003-019-00412-y.

Kausar, R., Hossain, Z., Makino, T. and Komatsu, S. (2012). Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Molecular Biology Reports, 39:10573-10579.

Kommavarapu, M., Balaraju, P., Ramakrishna, B. and Ram Rao, S. S. (2013). Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water Stress. American Journal of Plant Sciences, 4:2305-2313.

Khan, S. A., Karim, M. A., Mahmud, Abullah-Al, Sarveen, S., Bazzaz, M. M. and Hossain, M. A. (2015). Plant water relations and proline accumulations in soybean under salt and water stress environment. Journal of Plant Sciences, 3:272-278.

Laemmli (2011). Laemmli-SDS-PAGE. Bio Protocol, 1(11) DOI:10.21769/BioProtoc.80.

Liu, J., Wang, X., Hu, Y., Hu, W. and Yurong, B. (2013). Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots. Plant Cell Reports, 32:415-429.

Masoumi, H., Farrokh, D., Jahanfar, D., Ghorban, N. and Davood, H. (2011). Chemical and biochemical responses of soybean (Glycine max L.) cultivars to water deficit stress. Australian Journal of Crop Science, 5:544-553.

Mittler, R. and Zilinskas, B. A. (1994).Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant Journal, 5:397-405.

Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N. and Trivedi, H. K. (2020). Morphological and molecular screening of soybean genotypes against yellow mosaic virus disease. Legume Research an International Journal, DOI: 10.18805/LR4240.

Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Ahuja, A., Sapre, S. and Tiwari, S. (2021a). Cell suspension culture and in vitro screening for drought tolerance in soybean using poly-ethylene glycol. Plants, 10:517-536.

Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Gupta, N. and Sharma, A. (2021b). Morphological and physiological performance of Indian soybean [Glycine max (L.) Merrill] genotypes in respect to drought. Legume Research an International Journal, DOI:10.18805/LR-4550.

Murthy, S. M., Devaraj, V. R., Anitha, P. and Tejavathi, D. H. (2012). Studies on the activities of antioxidant enzymes under induced drought stress in in vivo and in vitro plants of Macrotyloma uniflorum (Lam.) Verdc. Recent Research in Science and Technology, 4:34-37.

Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22:867-880.

Porcel, R., Barea, J. M. and Ruiz-Lozano, J. M. (2003). Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytologist, 157:135-143.

Qayyum, A., Razzaq, A., Ahmad, M. and Jenks, M. A. (2011).Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes. African Journal of Biotechnology, 10:64. Doi.14038-14045.

Rao, M., Paliyath, G. and Ormrod, D. P. (1996). Ultraviolet-B and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology, 110:125-136.

Razzaq, A., All, Q., Qayyum, A., Mahmood, I., Ahmad, M. and Rasheed, M. (2013). Physiological responses and drought resistance index of nine wheat (Triticum aestivum L.) cultivars under different moisture conditions. Pakistan Journal of Botany, 45:151-155.

Rengasamy, P. (2002). Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Australian Journal of Experimental Agriculture, 42:351-361.

Sahu, V. K., Tiwari, S., Gupta, N., Tripathi, M. K. and Yasin, M. (2020). Evaluation of physiological and biochemical contents in desi and kabuli chickpea. Legume Research an International Journal, 10. doi. 18805/LR-4265.

Sharma, A., Tripathi, M. K., Tiwari, S., Gupta, N., Tripathi, N. and Mishra, N., (2021). Evaluation of soybean (Glycine max L.) genotypes on the basis of biochemical contents and anti-oxidant enzyme activities. Legume Research an International Journal, In Press.

Smith, I. K., Vierheller, T. V. and Thorne, C. A. (1988). Assay of glutathione reductase in crude tissue homogenates using 5, 5'-dithiobis (2-nitrobenzoic acid). Annals of Biochemistry, 175:408-413.

Snedecor, G. W. and Cochran, W. G. (1889). Statistical methods. VIII Ed. Wiley-Blackwell.

Specht, J. E., Chase, K., Macrander, M., Graef, G. L., Chung, J., Markwell, J. P., Germann, M., Orf, J. H. and Lark, K. G. (2001). Soybean response to water. A QTL analysis of drought tolerance. Crop Science, 41:493-509.

Stewart, R. R. C. and Bewley, J. D. (1980). Lipid peroxidation associated aging of soybean axes. Plant Physiology, 65:245-248.

Tatar, O. and Geverek, M. N. (2008). Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian Journal of Plant Sciences, 7:409-412. DOI:10.3923/ajps.2008.

Tiwari, S. and Tripathi, M. K. (2005). Comparison of morphogenic ability of callus types induced from different explants of soybean (Glycine max L. Merrill). Legume Research an International Journal, 28:115-118.

Tripathi, M. and Tiwari, S. (2004). Morphogenesis and plantlet regeneration from soybean (Glycine max L. Merrill) leaf discs influenced by genotypes and plant growth regulators. Legume Research an International Journal, 27:88-93.

Upadhyay, S., Singh, A. K., Tripathi, M. K., Tiwari, S. and Tripathi, N. (2020a). Validation of simple sequence repeats markers for charcoal rot and Rhizoctonia root rot resistance in soybean genotypes. International Journal of Applied Business Research, 10:137-144.

Upadhyay, S., Singh, A. K., Tripathi, M. K., Tiwari, S., Tripathi, N. and Patel, R. P. (2020b). In vitro selection for resistance against charcoal rot disease of soybean [Glycine max (L.) Merrill] caused by Macrophomina phaseolina (Tassi) Goid. Legume Research an International Journal, DOI: 10.18805/LR-4440.

Vasconcelos, A. C. F., Zhang, X. Z., Ervin, E. H. and Kiehl, J. D. (2009). Enzymatic antioxidant responses to biostimulants in maize and soybean subjected to drought. Scientia Agricola, 66:395-402.

Wang, N., Yuan, M., Chen, H., Li, Z. and Zhang, M., (2019). Effects of drought stress and rewatering on growth and physiological characteristics of invasive Aegilops tauschii seedlings. Acta Prataculturae Sinica, 28:70-78.

Wu, Z. and Zhang, Y. (2019). Effects of exogenous auxin on physiological and biochemical characteristics of soybean under PEG simulated drought stress. Hubei Agricultural Sciences, 58:16-19.

Xue, G. P., Way, H. M., Richardson, T., Drenth, J., Joyce, P. A. and McIntyre, C. L. (2011). Overexpression of TaNAC69 leads to enhanced transcript levels of stress up- regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 4:697-712.

Zhang, M., Duan, L., Tian, X., He, Z., Li, J., Wang, B. and Li, Z. (2007). Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. Journal of Plant Physiology, 164:709-717.