Effect of salicylhydroxamic acid on mycelial growth and baseline sensitivity to azoxystrobin in Phytophthora infestans causing potato late blight in Thailand
Main Article Content
Abstract
Late blight of potato caused by Phytophthora infestans is proved to be an aggressive pathogen. Azoxystrobin, a broad spectrum quinone outside inhibitor (QoI), has been used in potato cultivation, but not directly recommended to use to control late blight disease. In this study, a suitable method to determine the sensitivity of P. infestans against azoxystrobin and azoxystrobin sensitivity to P. infestans population was recorded in Chiang Rai and Chiang Mai, Thailand. The toxicity of SHAM was proved a nessary of SHAM addition to artificial media for an efficient determination of azoxystrobin sensitivity. Increased of SHAM concentration led increased mycelial inhibition. SHAM at concentration of 5 to 10 µg/ml showed less effect to mycelia growth of six representative isolates with means of 5.33 to 12.06% inhibition. Both concentrations of SHAM were applied with azoxystrobin for pre-in vitro sensitivity determination. Effective concentration for 50% inhibition (EC50) of azoxystrobin without SHAM was 0.0873 µg/ml, and the sensitivity were significantly increased in azoxystrobin amended with SHAM at 5 and 10 µg/ml for 55.34 and 70.90%, respectively. SHAM at 5 µg/ml was used for in vitro sensitivity assay to azoxystrobin. The thirty-six isolates of P. infestans were determined their azoxystrobin sensitivities based on EC50 evaluation. The mean EC50 value of isolate was 0.0531 µg/ml and ranged from 0.0005 to 0.4415 µg/ml indicating that azoxystrobin was very effective to control the mycelial growth of P. infestans isolated from Chiang Rai and Chiang Mai, Thailand
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Avila-adame, C., Olaya, G. and Köller, W. (2003). Characterization of Colletotrichum graminicola isolates resistant to strobilurin-related QoI fungicides. Plant Disease, 87:1426-1432.
Baek, H. S., Rho, H. S., Yoo, J. W., Ann, S. M., Lee, J. Y., Lee, J. A., Kim, M. K., Kim, D. H. and Chang, I. S. (2008). The inhibitory effect of new hydroxamic acid derivatives on melanogenesis. Bulletin of the Korean Chemical Society, 29:43-46.
Banno, S., Yamashita, K., Fukumori, F., Okada, K., Uekusa, H., Takagaki, M., Kimura, M. and Fujimura, M. (2009). Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathology, 58:120-129.
Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr-Dobrzanski, B. (2002). The strobing fungicides. Pest Management Science, 58:649-662.
Becker, W. F., Von Jagow, G., Anke, T. and Steglich, W. (1981). Oudumansin, Strobilurin A, Strobilurin B and Myxothazole: New inhibitors of the bc1 segment of the respiratory chain with an E-ß-methoxyacrylate system as common structure element. FEBS Letters, 132:329-333.
Chawdappa, P., Kumar, N. B. J., Madhura, S., Kumar, M. S. P., Myers, K. L., Fry, W. E. and Cooke, D. E. L. (2015). Severe outbreaks of late blight on potato and tomato in south India caused by recent changes in the Phytophthora infestans population. Plant Pathology, 64:191-199.
Chen, W. J., Delmotte, F., Richard-Cervera, S., Douence, L., Greif, G. and Corio-Costet, M. F. (2007). At least two origins of fungicide resistance in grapevine downy mildew populations. Applied and Environmental Microbiology, 73:5162-5172.
Duan, Y. B., Liu, S. M., Ge, C. Y., Feng, X. J., Chen, C. J. and Zhou, M. G. (2012). In vitro inhibition of Sclerotinia sclerotiorum by mixtures of azoxystrobin, SHAM and thiram. Pesticide Biochemistry and Physiology, 103:101-107.
Earnshaw, D. M. and Shattock, R. C. (2012). Sensitivity of progeny of Phytophthora infestans to fungicides. Asian Journal of Agricultural Science, 4:213-224.
Fernádez-Ortuño, D., Torés, J. A., de Vicenti, A. and Pérez-García, A. (2008). Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. International Microbiology, 11:1-9.
FRAC (2020). FRAC Code List © 2020: Fungal control agents sorted by cross resistance pattern and mode of action (including FRAC Code numbering). Retrieved from https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2020-finalb16c2b2c512362eb9a1eff00004acf5d.pdf?sfvrsn=54f499a_2
Gisi, U., Sierotzki, H., Cook, A. and Mc Cafferry, A. (2002) Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science, 58:859-867.
Gullino, M. L., Gilarda, G., Tinivella, F. and Garibaldi, A. (2004). Observations on the behaviour of different populations of Plasmopara viticola resistant to QoI fungicides in Italian vineyards. Phytopathologia Mediterranea, 43:341-350.
Hausladen, H., Adolf, B. and Leiminger, J. (2015). Evidence of strobilurine resistant isolates of A. solani and A. alternate in Germany. Fifteen Euroblight Workshop. Retrieved from https://euroblight.net/fileadmin/euroblight/Workshops/Brasov/Papers/12._Hausladen_Adolf_resistance-p93-100.pdf
Heaney, S. P., Hall, A. A., Davies, S. A. and Olaya, G. (2000). Resistance to fungicides in the QoI‐STAR cross‐resistance group: current perspectives. the British Crop Protection Conference: Pests and Diseases, Surrey, UK, pp.755-762.
Hsiao, K. C. and Bornman, C. H. (1993). Salicylhydroxamic acid mimics esterase-like action. Journal of Experimental Botany, 44:1847-1849.
Kittipadakul, P., Jaipeng, B., Slater, A., Stevonson, W. and Jansky, S. (2016). Potato Production in Thailand. American Journal of Potato Research, 93:380-385.
Lal, M., Sharma, S., Yadav, S. and Kumar, S. (2018). Management of late blight of potato. Retrived from https://www.intechopen.com/books/potato-from-incas-to-all-over-the-world/management-of-late-blight-of-potato.
Liang, H. J., Di, Y. L., You, H. and Zhu, F. X. (2015). Baseline sensitivity of pyraclostrobin and toxicity of SHAM to Sclerotinia sclerotiorum. Plant Disease, 99:267-273.
Faure, D., Jacoud, C., Bouillant, M. L. and Bally, R. (1995). Laccase activity in Azospirillum lipoferum: characteristics, melanization and Tn5 mutants. In: Fendrik, I., del Gallo, M., Vanderleyden, J. and de Zamaroczy, M. eds. Azospirillum VI and Related Microorganisms, Berlin, Springer, pp.313-317.
Ma, D., Jiang, J., He, L., Cui, K., Mu, W. and Liu, F. (2018). Detection and characterization of QoI-resistant Phytophthora capsici causing pepper Phytophthora blight in China. Plant Disease, 102:1725-1732.
Malandrakis, A. A., Markoglou, A. N., Nikou, D. C., Vontas, J. G. and Ziogas, B. N. (2006). Biological and molecular characterization of laboratory mutants of Cercospora beticola resistant to Qo inhibitors. European Journal of Plant Pathology, 116:155-166.
Markoglou, A. N., Malandrakis, A. A., Vitoratos, A. G. and Ziogas, B. N. (2006). Characterization of laboratory mutants of Botrytis cinerea resistant to QoI fungicides. European Journal of Plant Pathology, 115:149-162.
McGrath, M. T. and Shishkoff, N. (2003). First report of the cucurbit powdery mildew fungus (Podosphaera xanthii) resistant to strobilurin fungicides in the United States. Plant disease, 87:1007.
Möller, K., Habermeyer, J., Zinkernagel, V. and Reents, H. J. (2007). Impact and interaction of nitrogen and Phytophthora infestans as yield-limiting and yield-reducing factors in organic potato (Solanum tuberosum L.) crops. Potato Research, 49:281-301.
Pasche, J. S., Wharam, C. M. and Gudmestad, M. C. (2004). Shift in sensitivity of Alternaria solani in response to QoI fungicides. Plant Disease, 88:18-187.
Piccirillo, G., Carrieri, R., Polizzi, G., Azzaro, A., Lahoz, E., Fernández-Ortuño, D. and Vitale, A. (2018). In vitro and in vivo activity of QoI fungicides against Colletotrichum gloeosporioides causing fruit anthracnose in Citrus sinensis. Scientia Horticulture, 236:90-95.
Qi, R., Wang, T., Zhao, W., Li, P., Ding, J. and Gao, Z. (2012). Activity of ten fungicides against Phytophthora capsici isolates resistant to metalaxyl. Journal of Phytopathology, 160:717-722.
Rebollar-Alviter, A., Madden, L. V., Jeffers, S. N. and Ellis, M. A. (2007). Baseline and differential sensitivity to two QoI fungicides among isolates of Phytophthora cactorum that cause leather rot and crown rot on strawberry. Plant Disease, 91:1625-1637.
Rekanović, E., Potočnik, I., Milijašević-Marčić, S., Stepanović, M., Todorović, B. and Mihajlović, M. (2012). Toxicity of metalaxyl, azoxystrobin, dimethomorph, cymoxanil, zoxamide and mancozeb to Phytophthora infestans isolates from Serbia. Journal of Environmental Science and Health, Part B, 47:403-409.
Rosenzwing, N., Hanson, L. E., Pratt, D., Stewart, J. and Somohano, P. (2017). First report of QoI resistance in Alternaria spp. infecting sugar beet (Beta vulgaris). New Disease Reports, 36:5.
Saville, A. S., Graham, K., Grünwald, N. J., Myers, K., Fry, W. E. and Ristaino, J. B. (2015). Fungicide sensitivity of U.S. genotypes of Phytophthora infestans to six Oomycetes-targed compounds. Plant Disease, 99:659-666.
Sierotzki, H. (2015). Resporation inhibitors: Complex III. In: Ishii, H. and Hollomon, D. W. eds. Fungicide Resistance in Plant Pathogens. Japan, Springer, pp.119-143.
Sierotzki, H., Kraus, N., Assemat, P., Sanger, C., Cleere, C., Windass, J. and Gisi, H. (2005). Evolution of resistance to QoI fungicides in Plasmopara viticola populations in Europe. In: Dehne, H. W., Gisi, U., Kuck, K. H., Russell, P. E. and Lyr, H. eds. Modern fungicides and antifungal compounds IV. BCPC, Alton, UK, pp.73-80.
Stammler, G., Schutte, G. C., Speakman, J., Miessner, S. and Crous, P. W. (2013). Phyllosticta species on citrus: Risk estimation of resistance to QoI fungicides and identification of species with cytochrome b gene sequences. Crop Protection, 48:6-12.
Toffolatti, S. L., Prandato, M., Serrati, L., Sierotzki, H., Gisi, U. and Vercesi, A. (2011). Evolution of QoI resistance in Plasmopara viticola oospores. European Journal of Plant Pathology, 129:331-338.
Torres-Calzada, C., Tapia-Tussell, R., Higuera-Ciepara, L., Martin-Mex, R., Nexticapan-Garcez, A. and Perex-Brito, D. (2015). Sensitivity of Colletotrichum truncatum to four fungicides and characterization of thiabendazole-resistant isolates. Plant Disease, 99:1590-1595.
Tsukamoto, K., Itakura, H., Sato, K., Fukuyama, K., Miura, S., Takahashi, S., Ikezawa, H. and Hosoya, T. (1999). Binding of salicylhydroxamic acid and several aromatic donor molecules to Arthromyces ramosus peroxidase, investigated by x-ray crystallography, optical difference spectroscopy, NMR relaxation, molecular dynamics, and kinetics. Biochemistry, 38:12558-12568.
Vincelli, P. and Dixon, E. (2002). Resistance to QoI (Strobilurin-like) fungicides in isolates of Pyricularia grisea from perenial ryegrass. Plant Disease, 86:235-240.
Walker, A., Auclair, C., Gredt, M. and Leroux, P. (2009). First occurrence of resistance to strobilurin fungicides in Microdochium nivale and Microdochium majus from French naturally infected wheat grains. Pest Management Science, 65:906-915.
Wood, P. M. and Hollomon, W. (2003). A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of Complex III. Pest Management Science, 59:499-511.
Yamada, K. and Sonoda, R. (2012). Characterization of moderate resistance to QoI fungicides in Pestalotiopsis longiseta and polymorphism in exon-intron structure of cytochrome b gene. Journal of General Plant Pathology, 78:398-403.