Evaluation of the antagonistic and plant growth promoting properties of Streptomyces isolated from aubergine rhizosphere soil of Kanchipuram, Tamil Nadu, India

Main Article Content

Yogesh Pradeep, L.
Masilamani Selvam, M.
Manigundan, K.
Gopikrishnan, V.
Radhakrishnan, M.
Jerrine, J.
Soytong, K.

Abstract

The actinobacteria were isolated from the rhizosphere soil and characterized its plant growth promotion and antagonistic ability against Ralstonia solanacearum. Totally seven actinobacteria strains were isolated from aubergine rhizosphere soil and their cultural and morphological characterization showed all the seven strains belongs to Streptomyces spp. In vitro antagonistic screening of actinobacteria against R. solanacearum showed over 20 mm zone of inhibition by KTR3, KTR-4 and KTR6. Similarly, KTR-3 and KTR-4 produced the maximum level of IAA. In addition, the highest level of ammonia produced by KTR-6 and KTR-3. Among these seven strains, KTR-3 is alone able to produce IAA, siderophore, ammonia, cellulase, amylase and protease and solubilized phosphate. Also, in planta study showed 100% seed germination and highest shoot and root length in tomato, aubergine and chili which higher than other treatments. The strain KTR-3 was expressed the highest antimicrobial activity against R. solanacearum on utilization of glucose (24mm), peptone (24mm), ferrous sulfate (15mm) and pH 7 (23mm) as different sources. It exhibited the potential plant growth promoting and antagonistic activities, Streptomyces strain KTR-3 would be a promising candidate for agricultural use

Article Details

How to Cite
Yogesh Pradeep, L., Masilamani Selvam, M., Manigundan, K., Gopikrishnan, V., Radhakrishnan, M., Jerrine, J., & Soytong, K. (2021). Evaluation of the antagonistic and plant growth promoting properties of Streptomyces isolated from aubergine rhizosphere soil of Kanchipuram, Tamil Nadu, India. International Journal of Agricultural Technology, 17(4), 1651–1664. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6249
Section
Original Study

References

Abd-alla, M. H. and Rasmey, A. M. (2013). Indole-3-acetic acid (IAA) production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt. Journal of Biology and Earth Sciences, 3:B182-B193.

Adedeji, A. A., Häggblom, M. M. and Babalola, O. O. (2020). Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. Scientific African, 9:e00492.

Alexander, D. B. and Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12:39-45.

Al-Ghazali, L. H. and Omran, R. (2017). Optimization of medium composition for antibacterial metabolite production from Streptomyces sp. Asian Journal of Pharmaceutical and Clinical Research, 10:381-385.

Balagurunathan, R., Radhakrishnan, M., Shanmugasundaram, T., Gopikrishnan, V. and Jerrine J. (2020). Characterization and Identification of Actinobacteria. In: Protocols in Actinobacterial Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0728-2_3.

de Pedro-Jové, R., Puigvert, M., Sebastià, P., Macho, A. P., Monteiro, J. S., Coll, N. S., Setúbal, J. C. and Valls, M. (2021). Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection. BMC Genomics, 22:170.

de Souza, R., Ambrosini, A. and Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38:401-419.

Deshmukh, A. J., Jaiman, R. S., Bambharolia, R. P. and Patil, V. A. (2020). Seed Biopriming– A Review. International Journal of Economic Plants, 7:038-043.

Eljounaidi, K., Lee, S. K. and Bae, H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases—review and future prospects. Biological control, 103:62-68.

El-Tarabily, K. A. and Sivasithamparam, K. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry, 38:1505-1520.

Grubbs, K. J., May, D. S., Sardina, J. A., Dermenjian, R. K., Wyche, T. P., Pinto-Tomás, A. A., Clardy, J. and Currie, C. R. (2021). Pollen Streptomyces Produce Antibiotic That Inhibits the Honey Bee Pathogen Paenibacillus larvae. Frontiers in Microbiology, 12:632637.

Hamdali, H., Hafidi, M., Virolle, M. J. and Ouhdouch, Y. (2008). Rock phosphate-solubilizing Actinomycetes: Screening for plant growth-promoting activities. World Journal of Microbiology and Biotechnology, 24:2565-2575.

Hassanisaadi, M., Shahidi Bonjar, G. H., Hosseinipour, A., Abdolshahi, R., Ait Barka, E. and Saadoun, I. (2021). Biological Control of Pythium aphanidermatum, the Causal Agent of Tomato Root Rot by Two Streptomyces Root Symbionts. Agronomy, 11:846.

Insuk, C., Kuncharoen, N., Cheeptham, N., Tanasupawat, S. and Pathom-aree, W. (2020). Bryophytes Harbor Cultivable Actinobacteria With Plant Growth Promoting Potential. Frontiers in Microbiology, 11:563047.

Kavamura, V. N., Santos, S. N., Silva, J. L. da, Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D. and Melo, I. S. de. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168:183-191.

Khamna, S., Yokota, A., Peberdy, J. F. and Lumyong, S. (2010). Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian Journal of Biosciences, 32:23-32.

Landry, D., González-Fuente, M., Deslandes, L. and Peeters, N. (2020). The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Molecular Plant Pathology, 21:1377-1388.

Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. and Hong, J. K. (2012). Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathology Journal, 28:32-39.

Legein, M., Smets, W., Vandenheuvel, D., Eilers, T., Muyshondt, B., Prinsen, E., Samson, R. and Lebeer, S. (2020). Modes of Action of Microbial Biocontrol in the Phyllosphere. Frontiers in Microbiology, 11:1619.

Mamphogoro, T. P., Babalola, O. O. and Aiyegoro, O. A. (2020). Sustainable management strategies for bacterial wilt of sweet peppers (Capsicum annuum) and other Solanaceous crops. Journal of Applied Microbiology, 129:496-508.

Manikkam, R., Venugopal, G., Ramasamy, B. and Kumar, V. (2015). Effect of critical medium components and culture conditions on anti-tubercular pigment production from novel Streptomyces sp D25 isolated from Thar desert, Rajasthan. Journal of Applied Pharmaceutical Science, 5:015-019.

Manigundan, K., Joseph, J., Ayswarya, S., Vignesh, A., Vijayalakshmi, G., Soytong, K., Gopikrishnan, V. and Radhakrishnan, M. (2020). Identification of biostimulant and microbicide compounds from Streptomyces sp . UC1A-3 for plant growth promotion and disease control M aterials and m ethods Sample collection Rhizosphere soils were collected from Capsicum annum (Chili) agricultural fi. International Journal of Agricultural Technology, 16:1125-1144.

Minaxi, Nain, L., Yadav, R. C. and Saxena, J. (2012). Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Applied Soil Ecology, 59:124-135.

Minuto, A., Spadaro, D., Garibaldi, A. and Gullino, M. L. (2006). Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protection, 25:468-475.

Mishra, P., Mishra, J., Dwivedi, S. K. and Arora, N. K. (2020). Microbial Enzymes in Biocontrol of Phytopathogens. In Microbial Enzymes: Roles and Applications in Industries. Springer, Singapore, pp.259-285.

Myo, E. M., Ge, B., Ma, J., Cui, H., Liu, B., Shi, L., Jiang, M. and Zhang, K. (2019). Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiology, 19:155.

Ngalimat, M. S., Hata, E. M., Zulperi, D., Ismail, S. I., Ismail, M. R., Zainudin, N. A. I. M., Saidi, N. B. and Yusof, M. T. (2021). Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms, 9:682.

Passari, A. K., Mishra, V. K., Leo, V. V., Gupta, V. K. and Singh, B. P. (2016). Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiological Research, 193:57-73.

Passari, A. K., Mishra, V. K., Singh, G., Singh, P., Kumar, B., Gupta, V. K., Sharma, R. K., Saikia, R., Donovan, A. O. and Singh, B. P. (2017). Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Scientific Reports, 7:11809.

Passari, A. K., Upadhyaya, K., Singh, G., Abdel-Azeem, A. M., Thankappan, S., Uthandi, S. and Gupta, V. K. (2019). Enhancement of disease resistance, growth potential, and photosynthesis in tomato (Solanum lycopersicum) by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus strain BPSAC147. PloS one, 14:e0219014.

Paudel, S., Dobhal, S., Alvarez, A. M. and Arif, M. (2020). Taxonomy and phylogenetic research on ralstonia solanacearum species complex: A complex pathogen with extraordinary economic consequences. Pathogens, 9:886.

Selim, M. S. M., Abdelhamid, S. A. and Mohamed, S. S. (2021). Secondary metabolites and biodiversity of actinomycetes. Journal of Genetic Engineering and Biotechnology, 19:72.

Selvamohan, T., Parameswaran, N. K. and Felcy, S. A. (2016). Isolation of Actinomycetes from different soils for analysing the antagonistic activity against pathogens. International Journal of Advanced Research in Biological Sciences, 3:124-131.

Shirling, E. B. and Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology, 16:313-340.

Sirisha, B., Haritha, R., Jagan Mohan, Y. S. Y. V, Siva Kumar, K. and Ramana, T. (2013). Bioactive compounds from marine actinomycetes isolated from the sediments of Bay of Bengal. International Journal of Pharmaceutical, Chemical and Biological Sciences, 3:257-264.

Tan, H. M., Cao, L. X., He, Z. F., Su, G. J., Lin, B. and Zhou, S. N. (2006). Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World Journal of Microbiology and Biotechnology, 22:1275-1280.

Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A. and Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: A review. Applied Biochemistry and Microbiology, 42:117-126.

Umadevi, U., Narasimha Murthy, K., Gayathri Devi, N. and Srinivas, C. (2021). Isolation and identification of bacterial wilt causing Ralstonia solanacearum from groundnut (Arachis hypogaea L.). International Journal of Agricultural Technology, 17:767-780.

Wahyudi, A. T., Priyanto, J. A., Fijrina, H. N., Mariastuti, H. D. and Nawangsih, A. A. (2019). Streptomyces spp. From rhizosphere soil of maize with potential as plant growth promoter. Biodiversitas, 20:2547-2553.

Williams, S. T., Goodfellow, M. and Alderson, G. (1989). Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams S.T., Sharpe, M.E. and Holt, J.G., Eds., Bergey’s Manual of Systematic Bacteriology, Vol. 4, Williams and Wilkins, Baltimore, pp.2452-2492.

Xiong, Q., Hu, J., Wei, H., Zhang, H. and Zhu, J. (2021). Relationship between plant roots, rhizosphere microorganisms, and nitrogen and its special focus on rice. Agriculture (Switzerland), 11:234.

Yuliar, Asi Nion, Y. and Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments, 30:1-11.