Phytomicrobiome: A potential resource for agriculture – Short Review

Main Article Content

Gopikrishnan, V.
Radhakrishnan, M.
Joseph, J.
Abirami, B.
Manigundan, K.

Abstract

Plants are living with a plethora of microorganisms playing major roles for plant growth and health. Significant information is currently available on the structure, functional capabilities and dynamics of plant microbiota members. Due to present challenges in crop production and the interesting functional potential of plant microbiota is an urgent need to bring microbial innovations into practice and also for field improvement is required. Microbes like bacteria, fungi, actinobacteria etc. are playing a key role in association with plants. Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. On the other hand, farming practices or the plant genotype can influence plant microbiota and thus functioning and improving the ecology soil ecosystem that indirectly affect the climate changes and stress tolerance. Therefore, various different avenues are improving the plant microbe interactions useful for betterment of plant breading. Still research areas like molecular mechanism of plant microbiome and signaling especially quorum sensing are the valuable for new generation could lead to a better use of the plant microbiome. This paper reviews the importance and functionalities of the plant microbiome

Article Details

How to Cite
Gopikrishnan, V., Radhakrishnan, M., Joseph, J., Abirami, B., & Manigundan, K. (2021). Phytomicrobiome: A potential resource for agriculture – Short Review. International Journal of Agricultural Technology, 17(5), 1727–1734. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6276
Section
Original Study

References

Azcón, R. (2014). Mycorrhizosphere: The role of PGPR. In Root Engineering; Morte, A., Varma, A., Eds.; Springer: Berlin, Germany, pp.107-144.

Corral-Lugo, A., Daddaoua, A., Ortega, A., Espinosa-Urgel, M. and Krell, T. (2016). Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Science Signaling, 9:1-10.

Delalande, L., Faure, D., Raffoux, A., Uroz, S., D’Angelo-Picard, C., Elasri, M., Carlier, A., Berruyer, R., Petit, A., Williams, P. and Dessaux, Y. (2005). N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiology Ecology. 52:13-20.

DeLonge, M. S., Miles, A. and Car, L. (2016) Investing in the transition to sustainable agriculture. Environmental Science & Policy, 55:266-273.

Dubuis, C., Keel, C. and Haas, D. (2007). Dialogues of root-colonizing biocontrol pseudomonads. European Journal of Plant Pathology, 119:311-328.

Elasri, M., Delorme, S., Lemanceau, P., Stewart, G., Laue, B., Glickmann, E., Oger, P. M. and Dessaux, Y. (2001). Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil borne Pseudomonas spp. Applied and Environmental Microbiology, 67:1198-1209.

Fu, S.-F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y. and Chou, J. Y. (2015). Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signaling & Behavior, 10:1048052.

Gao, X. and Kolomiets, M. V. (2009). Host-derived lipids and oxylipins are crucial signals in modulating mycotoxin production by fungi. Toxin Reviews, 28:79-88.

Hacquard, S., Garrido Oter, R., González, A., Spaepen, S., Ackermann, G., Lebeis, S., et al. (2015). Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host & Microbe, 17(5): 603-613. doi:10.1016/j.chom.2015.04.009.

Hardoim, P. R., Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79:293-320.

Hartmann, J., Boulet, C. and Robert, D. (2008). Collisional effects on molecular spectra: laboratory experiments and models, consequences for applications, Elsevier Sci., Amsterdam.

Hurek, B., Bünger, W., Burbano, C. S., Sabale, M. and Hurek, T. (2015). Roots shaping their microbiome: global hotspots for microbial activity. Annual Review of Phytopathology, 53:403-24.

Jones, S. E., Ho, L., Rees, C. A., Hill, J. E., Nodwell, J. R. and Elliot, M. A. (2017). Streptomyces exploration is triggered by fungal interactions and volatile signals. eLife, 6:21738.

Kaiser, R. (2006). Flowers and fungi use scents to mimic each other. Science, 311:806-807.

Kanchiswamy, C. N., Malnoy, M. and Maffei, M. E. (2015). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science, 6:151.

Leach, J. E., Triplett, L. R., et al. (2017). Communication in the Phytobiome. Cell, 169:587-596.

Lee, J. H., Wood, T. K. and Lee, J. (2015). Roles of indole as an interspecies and interkingdom signaling molecule. Trends in Microbiology, 23:707-718.

Lemanceau, P., Blouin, M., Muller, D. and Loccoz, Y. (2017). Let the core microbiota be functional. Trends in Plant Science, 22:583-95.

Li, N., Alfiky, A., Vaughan, M. M. and Kang, S. (2016). Stop and smell the fungi: Fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biology Reviews, 30:134-144.

Marchesi, J. R. and Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Marchesi and Ravel Microbiome, 3:31.

Pagano, M. C., Dantas, B. D., Weber, O. B., Correa, E. A., Tancredi, F. D. Duarte, N. F., Bago, A. and Cabello, M. N. (2016). Mycorrhizas in Agroecosystems. In Recent Advances on Mycorrhizal Fungi; Pagano, M.C., Ed.; Springer: Basel, Switzerland, 91-100.

Remus-Emsermann, M. N. P., Tecon, R., Kowalchuk, G. A. and Leveau, J. H. J. (2012). Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J., 6:756-765.

Saleem, M. and Moe, L. A. (2014).Multitrophic microbial interactions for eco- and agro-biotechnological processes: Theory and practice, Trends in Biotechnology, 32:529-537.

Schaefer, A. L., Lappala, C .R., Morlen, R. P., Pelletier, D. A., Lu, T. Y., Lankford, P. K., Harwood, C. S. and Greenberg, E. P. (2013). LuxR- and luxI-type quorum-sensing circuits are prevalent in members of the Populus deltoids microbiome. Applied and Environmental Microbiology, 79:5745-5752.

Schmidt, R., Etalo, D. W., de Jager, V., Gerards, S., Zweers, H., de Boer, W. and Garbeva, P. (2016). Microbial small talk: Volatiles in fungal–bacterial interactions. Frontiers in Microbiology, 6:1495.

Smith, D. L., Praslickova, D. and Ilangumaran, G. (2015). Inter-organismal signaling and management of the phytomicrobiome. Frontiers in Plant Science, 6:722.

Specht, A., Guru, S., Houghton, L., Keniger, L., Driver, P., Ritchie, E. G., Lai, K. and Treloar, A. (2015). Data management challenges in analysis and synthesis in the ecosystem sciences. Science of the Total Environment, 534:144-158.

Szabo, Z., Tonnis, M., Kessler, H. and Feldbru¨gge, M. (2002). Structure-function analysis of lipopeptide pheromones from the plant pathogen Ustilago maydis. Molecular Genetics and Genomics, 268:362-370.

Tait, K., Joint, I., Daykin, M., Milton, D. L., Williams, P. and Ca´ mara, M. (2005). Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environmental Microbiology, 7:229-240.

Talbot, J. M., Bruns, T. D., Taylor, J. W., Smith, D. P, Branco, S., Glassman, S. I., Erlandson, S. z, Vilgalys, R., Liao, H. L., Smith, M. E. et al. (2014). Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences, 111:6341-6346.

Teplitski, M., Mathesius, U. and Rumbaugh, K. P. (2011). Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chemistry Review, 111:100-116.

Tsitsigiannis, D. I. and Keller, N. P. (2007). Oxylipins as developmental and host-fungal communication signals. Trends in Microbiology, 15:109-118.

Vikram, A., Jayaprakasha, G. K., Jesudhasan, P. R., Pillai, S. D. and Patil, B. S. (2010). Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. Journal of Applied Microbiology, 109:515-527.

Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10:828-40.

Werner, S., Polle, A. and Brinkmann, N. (2016). Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Applied Microbiology and Biotechnology, 100:8651-8665.