Potential of Trichoderma asperellum as a bio-control agent against citrus diseases caused by Penicillium digitatum and Colletotrichum gloeosporioides
Main Article Content
Abstract
Colletotrichum gloeosporioides is the main cause of citrus post-bloom and pre-harvest fruit drops, resulting in up to 65% and 22% of citrus crop loss, respectively, while Penicillium digitatum primarily causes green mold on postharvest citrus fruits accounting for 90% of total citrus fruit loss due to postharvest decay. Biocontrol agents are considered as eco-friendly and bio-safe alternatives of fungicides, and hence, being actively seeking. Previously, several T. asperellum strains have been demonstrated to be effectively inhibit either P. digitatum or C. gloeosporioides growths. We, therefore, wondered whether our Trichoderma isolates could simultaneously inactivate P. digitatium and C. gloeosporioides in vitro and protect citrus crops from green mold and anthracnose. Here, we defined three T. asperellum strains, which inhibited P. digitatum and C. gloeosporioides extension by around 99% and 77%, respectively. Single factor experiments showed that a medium containing 2% of sucrose and 1% of peptone on rice husks cultivated at 28oC for 15 days was the best condition for these strains to produce conidia. Additionally, supplement of conidial suspension with 10% glycerol, 0.2% CMC, and 0.3% Tween 80 preserved spore viability by 80% after 2 months of storage. The development of citrus green mold and anthracnose was also inhibited in the presence of T. asperellum formulated conidia. Overall, these data indicated a potential application of the formulated conidia as a biocontrol agent in preventing citrus crop loss caused by both preharvest and postharvest diseases
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Alemu, K. (2014). Dynamics and management of major postharvest fungal diseases of mango fruits. Journal of Biology Agriculture and Healthcare, 4:13-21.
Borrás, A. D. and Aguilar, R. V. (1990). Biological control of Penicillium digitatum by Trichoderma viride on postharvest citrus fruits. International journal of food microbiology, 11:179-183.
Cheng, Y., Lin, Y., Cao, H. and Li, Z. (2020). Citrus postharvest green mold: Recent advances in fungal pathogenicity and fruit resistance. Microorganisms, 8:449-466.
Cruz-Lagunas, B., Ortega-Acosta, S. A., Reyes-García, G., Toribio-Jiménez, J., Juárez-López, P., Guillén-Sánchez, D., Damián-Nava, A., Romero-Ramírez, Y. and Palemón-Alberto, F. (2020). Colletotrichum gloeosporioides causes anthracnose on grapefruit in Mexico. Australasian Plant Disease Notes, 15:1-4.
De la Cruz-Quiroz, R., Roussos, S., Rodríguez-Herrera, R., Hernandez-Castillo, D. and Aguilar, C. N. (2018). Growth inhibition of Colletotrichum gloeosporioides and Phytophthora capsici by native Mexican Trichoderma strains. Karbala International Journal of Modern Science, 4:237-243.
De los Santos-Villalobos, S., Guzmán-Ortiz, D. A., Gómez-Lim, M. A., Délano-Frier, J. P., de-Folter, S., Sánchez-García, P. and Peña-Cabriales, J. J. (2013). Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biological Control, 64:37-44.
El_Komy, M. H., Saleh, A. A., Eranthodi, A. and Molan, Y. Y. (2015). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. The Plant Pathology Journal, 31:50-60.
Ferreira, F. V., Herrmann‐Andrade, A. M., Calabrese, C. D., Bello, F., Vázquez, D. and Musumeci, M. A. (2020). Effectiveness of Trichoderma strains isolated from the rhizosphere of citrus tree to control Alternaria alternata, Colletotrichum gloeosporioides and Penicillium digitatum A21 resistant to pyrimethanil in post‐harvest oranges (Citrus sinensis L. (Osbeck)). Journal of applied microbiology, 129:712-727.
González-Estrada, R., Blancas-Benítez, F., Montaño-Leyva, B., Moreno-Hernández, C., Romero-Islas, L. D. C., Romero-Islas, J., Avila-Peña, R., Ramos-Guerrero, A., Fonseca-Cantabrana, A. and Gutierrez-Martinez, P. (2018). A review study on the postharvest decay control of fruit by Trichoderma. In:Trichoderma-The Most Widely Used Fungicide. Trichoderma - The Most Widely Used FungicidePublisher. IntechOpen, 1-15. DOI:10.5772/intechopen.82784
Haque, Z., Iqbal, M. S., Ahmad, A., Khan, M. S., Singh, S. P. and Prakash, J. (2020). Explorations of tolerant Trichoderma spp. as plant growth promoter and biocontrol agent against Colletotrichum falcatum. Journal of Pure and Applied Microbiology, 14: 327-339.
Holmes, G. J. and Eckert, J. W. (1999). Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology, 89:716-721.
Ismail, M. and Zhang, J. (2004). Post-harvest citrus diseases and their control. Outlooks on Pest Management, 15:29-35.
Lima, W. G., Spósito, M. B., Amorim, L., Gonçalves, F. P. and de Filho, P. A. M. (2011). Colletotrichum gloeosporioides, a new causal agent of citrus post-bloom fruit drop. European Journal of Plant Pathology, 131:157-165.
Nakasone, K. K., Peterson, S. W. and Jong, S. C. (2004). Preservation and distribution of fungal cultures. Biodiversity of fungi: inventory and monitoring methods, Amsterdam: Elsevier Academic Press, pp.37-47.
Naqvi, S. A. M. H. (2004). Diagnosis and management of pre and post-harvest diseases of citrus fruit. In Diseases of Fruits and Vegetables, Springer, 1:339-359.
Ramírez-Olier, J., Trujillo-Salazar, J., Osorio-Echeverri, V., Jaramillo-Ciro, M. and Botero-Botero, L. (2019). In vitro antagonism of Trichoderma asperellum against Colletotrichum gloeosporioides, Curvularia lunata, and Fusarium oxysporum. Revista UIS Ingenierías, 18:159-165.
Ramos, A. P., Talhinhas, P., Sreenivasaprasad, S. and Oliveira, H. (2016). Characterization of Colletotrichum gloeosporioides, as the main causal agent of citrus anthracnose, and C. karstii as species preferentially associated with lemon twig dieback in Portugal. Phytoparasitica, 44:549-561.
Ran, L., Zhu, Z., Yang, C., Xu, Y., Li, P., He, M., Wang, J., Chen, X. and Li, W. (2016). Effects of Tween-20 and Tween-80 on germination of Magnaporthe oryzae spores. Southwest China Journal of Agricultural Sciences, 29:2379-2382.
Regnier, T., Combrinck, S., Veldman, W. and Du Plooy, W. (2014). Application of essential oils as multi-target fungicides for the control of Geotrichum citri-aurantii and other postharvest pathogens of citrus. Industrial Crops and Products, 61:151-159.
Rhaiem, A. and Taylor, P. W. (2016). Colletotrichum gloeosporioides associated with anthracnose symptoms on citrus, a new report for Tunisia. European Journal of Plant Pathology, 146:219-224.
Rossi-Rodrigues, B. C., Brochetto-Braga, M. R., Tauk-Tornisielo, S. M., Carmona, E. C., Arruda, V. M. and Chaud Netto, J. (2009). Comparative growth of Trichoderma strains in different nutritional sources, using bioscreen c automated system. Brazilian Journal of Microbiology, 40:404-410.
Shang, J., Liu, B. and Xu, Z. (2020). Efficacy of Trichoderma asperellum TC01 against anthracnose and growth promotion of Camellia sinensis seedlings. Biological Control, 143:104205.
Sharma, M. and Kulshrestha, S. (2015). Colletotrichum gloeosporioides: an anthracnose causing pathogen of fruits and vegetables. Biosciences Biotechnology Research Asia, 12:1233-1246.
Valenzuela, N. L., Angel, D. N., Ortiz, D. T., Rosas, R. A., García, C. F. O. and Santos, M. O. (2015). Biological control of anthracnose by postharvest application of Trichoderma spp. on maradol papaya fruit. Biological Control, 91:88-93.
Vu, T. X. and Tran, V. T. (2020). Isolation and characterization of Trichoderma strains antagonistic against pathogenic fungi on orange crops. VNU Journal of Science: Natural Sciences and Technology, 36:98-104.
Vu, T. X., Ngo, T. T., Mai, L. T. D., Bui, T. T., Le, D. H., Bui, H. T. V., Nguyen, H., Q. and Tran, V. T. (2018). A highly efficient Agrobacterium tumefaciens-mediated transformation system for the postharvest pathogen Penicillium digitatum using DsRed and GFP to visualize citrus host colonization. Journal of microbiological methods, 144: 134-144.
Wang, W., de Silva, D. D., Moslemi, A., Edwards, J., Ades, P. K., Crous, P. W. and Taylor, P. W. (2021). Colletotrichum species causing anthracnose of citrus in Australia. Journal of Fungi, 7:47-70.
Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. and Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8:71-126.
Zhu, C., Sheng, D., Wu, X., Wang, M., Hu, X., Li, H. and Yu, D. (2017). Identification of secondary metabolite biosynthetic gene clusters associated with the infection of citrus fruit by Penicillium digitatum. Postharvest Biology and Technology, 134:17-21.