Antifungal activity of Bacillus subtilis subsp. spizizenii BL-59 to control some important postharvest diseases of mango fruits (Mangifera indica L.)

Main Article Content

Duangkaew, P.
Monkhung, S.

Abstract

The antifungal activity of antagonistic bacteria isolated from the rhizosphere soil of rice in Ban-Laem district, Phetchaburi province, Thailand was investigated. The fungal pathogens, Colletotrichum sp. and Pestalotiopsis sp. were isolated from the infected fruit, causing postharvest diseases in mango. The preliminary study was conducted using a dual culture assay to determine the antifungal activity of the BL-59 isolate. The dual culture assay showed that the antagonistic bacteria inhibited the mycelial growth of Colletotrichum sp. and Pestalotiopsis sp. by 49.31% and 42.55%, respectively. Furthermore, this isolate BL-59 produced volatile organic compounds (VOCs), which inhibited the mycelial growth of Colletotrichum sp. by 60.00%. Microscopic observation of the hyphal morphology of Colletotrichum sp. revealed the presence of abnormal hyphal structure. Morphological and biochemical studies of antagonistic bacteria BL-59 demonstrated that this isolate was classified as gram-positive, rod-shaped, and endospore-forming, and it showed survival growth under salinity stress and high temperature (45ºC). Moreover, this strain produced catalase and oxidase enzymes. BL-59 was identified as closely related to Bacillus subtilis subsp. spizizenii (99.79%) using molecular identification based on the 16S rRNA gene. This study revealed that antagonistic bacteria can be used as an alternative choice to control anthracnose disease by reducing the chemical residues in agricultural production

Article Details

How to Cite
Duangkaew, P., & Monkhung, S. (2021). Antifungal activity of Bacillus subtilis subsp. spizizenii BL-59 to control some important postharvest diseases of mango fruits (Mangifera indica L.). International Journal of Agricultural Technology, 17(6), 2053–2066. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6328
Section
Original Study

References

Agrios, G. N. (1997). Plant pathology. 4th edition. Academic Press, California.

Alabouvette, C., Olivain, C., Migheli, Q. and Steinberg, C. (2009). Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytologist, 184:529-544.

Alexopoulos, C. O., Mims, C. W. and Blackwell, M. (2002). Introductory Mycology. 4th edition. John Wiley and Sons Inc. Singapore. 869pp.

Ali, M. A., Ren, H., Ahmed, T., Luo, J., An, Q., Qi, X. and Li, B. (2020). Antifungal effects of rhizospheric Bacillus species against bayberry twig blight pathogen Pestalotiopsis versicolor. Agronomy, 10:1811. https://doi.org/10.3390/agronomy10111811

Arauz, L. F. (2000). Mango anthracnose: Economic impact and current options for integrated management. Plant Disease, 84:600-611.

Balouiri, M., Sadiki, M. and Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6:71-79.

Barnett, H. L. and Hunter, B. B. (1986). Illustrated genera of imperfect fungi. 4th edition. Macmillan Publishing Co., New York.

Beattie, G. A. (2006). Plant-associated bacteria: Survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam, S. S. (ed) Plant-Associated Bacteria. Springer, Dordrecht, pp.1-56.

Berg, G. and Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68:1-13.

Chung, W. H., Ishii, H., Nishimura, K., Fukaya, M., Yano, K. and Kajitani, Y. (2006) Fungicide Sensitivity and Phylogenetic Relationship of Anthracnose Fungi Isolated from Various Fruit Crops in Japan. Plant Disease, 90:506-512.

Coates, L. and Johnson, G. (1997). Postharvest pathology of fruit and vegetables. In: J.F. Brown and H.J. Ogle (eds.). Plant pathogens and plant diseases. Rockvale Publications, Berringer, Austrialia, pp.533-547.

de Lillo, A., Ashley, F. P., Palmer, R. M., Munson, M. A., Kyriacou, L., Weightman, A. J. and Wade, W. G. (2006). Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiology and Immunology, 21:61-68.

Đinh, Q., Chongwungse, J., Pongam, P. and Sangchote, S. (2003). Fruit infection by Colletotrichum gloeosporioides and anthracnose resistance of some mango cultivars in Thailand. Australasian Plant Pathology, 32:533-538.

Dodd, J. C., Estrada, A. B., Matcham, J., Jeffries, P. and Jeger, M. J. (1991). The effect of climatic factors on Colletotrichum gloeosporioides, causal agent of mango anthracnose, in the Philippines. Plant Pathology, 40:568-575.

Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., and Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59:1498-1513.

Fuchs, S. W., Jaskolla, T. W., Bochmann, S., Ko¨tter, P., Wichelhaus, T., Karas, M., Stein, T. and Entian, K. D. (2011). Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity. Applied And Environmental Microbiology, 77:1698-1707.

Hong, S. K., Lee, S. Y., Choi, H. W., Lee, Y. K., Joa, J. and Shim, H. (2012). Occurrence of stem-end rot on mango fruits caused by Lasiodiplodia theobromae in Korea. Plant Pathology Journal, 28:455.

Johnson, G. I., Mead, A. J., Cooke, A. W. and Dean, J. R. (1992). Mango stem end rot pathogens-Fruit infection by endophytic colonization of the inflorescence and pedicel. Annals of Applied Biology, 120:225-234.

Kamilova, F., Validov, S., Azarova, T., Mulders, I. and Lugtenberg, B. (2005). Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, 7:1809-1817.

Karunanayake, K. O. L. C. and Adikaram, N. K. B. (2020). Stem-end rot in major tropical and sub-tropical fruit species. Ceylon Journal of Science, 49:327-336.

Katznelson, H., Gillespie, D. C. and Cook, F. D. (1964). Studies on the relationships between nematodes and other soil microorganisms. 3. Lytic action of soil myxobacters on certain species of nematodes. Canadian Journal of Microbiology, 10:699-704.

Ko, H. S., Jin, R. D., Krishnan, H. B., Lee, S. B. and Kim, K. Y. (2009). Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Current Microbiology, 59:608-615.

Kong, W. L., Rui, L, Ni, H. and Wu, X. Q. (2020). Antifungal effects of volatile organic compounds produced by Rahnella aquatilis JZ-GX1 against Colletotrichum gloeosporioides in Liriodendron chinense × tulipifera. Frontiers in Microbiology, 11:1114.

Li, G., Lai, R., Duan, G., Lyu, L. B., Zhang, Z. Y., Liu, H., Xiang, X. (2014). Isolation and identification of symbiotic bacteria from the skin, mouth, and rectum of wild and captive tree shrews. Zoological Research, 35:492-499.

Li, Q., Bu, J., Shu, J., Yu, Z., Tang, L., Huang, S., Guo, T., Mo, J., Luo, S., Solangi, G. S. and Hsiang, T. (2019). Colletotrichum species associated with mango in southern China. Scientific Reports, 9:18891.

Maksimov, I. V., Abizgil’dina, R. R. and Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Applied Biochemistry and Microbiology, 47:333-345.

Mukherjee, S. K. (1953). The mango-its botany, cultivation, uses and future improvement, especially as observed in India. Economic Botany, 7:130-162.

Muller, A. T. and Burt, J. R. (1989). Postharvest storage control of mango stem-end rot with fungicidal dips. Australian Journal of Experimental Agriculture, 29:125 -127.

Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P. and Hens, L. (2016). Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, 4:148.

Podile, A. R. and Kishore, G. K. (2006). Plant growth-promoting rhizobacteria. In: Gnanamanickam, S. S. (ed) Plant-Associated Bacteria. Springer, Netherlands, pp.195-230.

Prusky, D., Kobiler, I., Miyara, I. and Alkan, N. (2009). Fruit diseases. In The Mango, Botany, Production and Uses, 2nd ed.; Litz, R., Ed.; CABI International: Wallingford, UK, pp. 210-231.

Prusky, D., Shalom, Y., Kobiler, L., Akerman, M. and Fuchs, Y. (2002). The level of quiescent infection by Alternaria alternata in mango fruits at harvest determines the postharvest treatment applied for the control of rots during storage. Postharvest Biology and Technology, 25:339-347.

Rahman, M. F., Islam, M. R., Rahman, T. and Meah, M. B. (2010). Biochemical characterization of Ralstonia solanacerum causing bacterial wilt of brinjal in Bangladesh. Progressive Agriculture, 21:9-19.

Reva, O. N., Dixelius, C., Meijer, J. and Priest, F. G. (2004). Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiology Ecology, 48:249-259.

Reyes-Perez, J. J., Hernandez-Montiel, L. G., Vero, S., Noa-Carrazana, J. C., Quiñones-Aguilar, E. E., and Rincón-Enríquez, G. (2019). Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action. Journal of Food Science and Technology, 56:4992-4999.

Rungjindamai, N. (2016). Isolation and evaluation of biocontrol agents in controlling anthracnose disease of mango in Thailand. Journal of Plant Protection Research, 56:306-311.

Schaad, N. W. (1992). Laboratory guide for identification of plant pathogenic bacteria. 2nd edition. American Phyto pathological Society, 138 p.

Schroth, M. N. and Hancock, J. G. (1982). Disease-suppressive soil and root-colonizing bacteria. Science, 216:1376-1381.

Sivakumar, D., Wilson, R. S., Wijesundera, R. L. C., Marikar, F. M. T. and Abeyesekere, M. (2000). Antagonistic effect of Trichoderma harzianum on postharvest pathogens of Rambutan (Nephelium lappaceum). Phytoparasitica, 28:240-247.

Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56:845-857.

Turner, J. T. and Backman, P. A. (1991). Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Disease, 75:347-353.

Urrea, R., Cabezas, L., Sierra, R., Ca´rdenas, M., Restrepo, S. and Jime´nez1, P. (2011). Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. Journal of Applied Microbiology, 111:707-716.

Valero, M., Garcia-Martinez, S., Giner, M. J., Alonso, A. and Ruiz, J. J. (2010). Benomyl sensitivity assays and species-specific PCR reactions highlight association of two Colletotrichum gloeosporioides types and C. acutatum with rumple disease on Primofiori lemons. European Journal of Plant Pathology, 127:399-405.

Wang, K., Qin, Z., Wu, S., Zhao, P., Zhen, C. and Gao, H. (2021). Antifungal mechanism of volatile organic compounds produced by Bacillus subtilis CF-3 on Colletotrichum gloeosporioides assessed using omics technology. Journal of Agricultural and Food Chemistry, 69:5267-5278.

Wardle, A. D., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H. and Wall, D. H. (2004). Ecological Linkages Between Aboveground and Belowground Biota. Science, 304:1629-1633.

Zhao, L., Xu, Y. and Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49:269-278.

Zheng, M., Shi, J., Shi, J., Wang, Q. and Li, Y. (2013). Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biological Control, 65:200-206.