Antibacterial activity of alkaloid extracts and active constituents of some selected plants against Xanthomonas campestris
Main Article Content
Abstract
The present investigation evaluates the antibacterial activity of alkaloid extracts of Acacia catechu, A. ferruginea, Adenanthera pavonina, Albizia amara, A. saman, Breynia vitis-idaea, Senna spectabilis and Solanum indicum, and bioactive compounds budmunchiamine-A isolated from A. amara and pithecolobine from A. saman against an important phytopathogen Xanthomonas campestris. The results revealed that alkaloid extracts of all plants showed significant antibacterial activity with zone of inhibition (ZOI), minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) ranged from 9.1 to 12.5 mm, 31.25 to 500 µg/ml and 125 to 2000 µg/ml, respectively. The active compounds isolated from alkaloid extract of A. amara and A. saman have been identified as budmunchiamine-A and pithecolobine, respectively. The active compounds budmunchiamine-A and pithecolobine showed concentration-dependent anti-X. campestris activity with ZOI, MIC and MBC ranged from 12.6 to 20.3 mm, 15.6 to 31.2 µg/ml and 62.5 to 125 µg/ml, respectively. The results revealed that alkaloid extracts of these plants as well as budmunchiamine-A and pithecolobine could be used as an alternative strategy for the management of diseases caused by Xanthomonas spp.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ahmad, I., Aqil, F. and Owais, M. (2006). Modern Phytomedicine- Turning medicinal plants into drugs. Weinheim: Wiley-VCH: Verlag GmbH and Co KGaA.
Ali, A., Haider, M. S., Mushtaq, S., Khokhar, I., Mukhtar, I., Hanif, S. and Akhtar, N. (2012). In vitro controlling the establishment of Xanthomonas campestris with different bacterial bio-agents. Global Advanced Research Journal of Microbiology 1:135-139.
Babu, P. S., Prabuseenivasan, S. and Ignacimuthu, S. (2007). Cinnamaldehyde-a potential antidiabetic agent. Phytomedicine 14:15-22.
Bajpai, V. K., Kang, S., Xu, H., Lee, S. G., Baek, K. H. and Kang, S. C. (2011). Potential roles of essential oils on controlling plant pathogenic bacteria Xanthomonas species: A review. Plant Pathology Journal 27:207-224.
Boureau, T., Kerkoud, M., Chhel, F., Hunault, G., Darrasse, A., Brin, C., Durand, K., Hajri, A., Poussier, S., Manceau, C., Lardeux, F., Saubion, F. and Jacques, M. A. (2013). A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli. Journal of Microbiological Methods 92:42-50.
Britto, A. J. D. and Gracelin, D. H. S. (2011). Eco-friendly biocontrol measures for Xanthomonas infection on vegetable crops. Pharmacologyonline 3:224-229.
Deng, Y., Yu, Y., Luo, H., Zhang, M., Qin, X. and Li, L. (2011). Antimicrobial activity of extract and two alkaloids from traditional Chinese medicinal plant Stephania dielsiana. Food Chemistry 124:1556-1560.
Ebrahimabadi, A. H., Djafari-Bidgoli, Z., Mazoochi, A., Kashi, F. J. and Batooli, H. (2010). Essential oils composition, antioxidant and antimicrobial activity of the leaves and flowers of Chaerophyllum macropodum Boiss. Food Control 21:1173-1178.
Hajji, M., Jarraya, R., Lassoued, I., Masmoudi, O., Damak, M. and Nasri, M. (2010). GC/MS and LC/MS analysis, and antioxidant and antimicrobial activities of various solvent extracts from Mirabilis jalapa tubers. Process Biochemistry 45:1486-1493.
Harborne, J. B. (1998). Phytochemical methods: a guide to modern techniques of plant analysis 3rd edition. London: Chapan and Hall Publication.
Hayward, A. C. (1993). The hosts of Xanthomonas. In Swings, J. G. and Civerolo, E. L. (Eds.), Xanthomonas. London: Chapan and Hall Publication. pp. 1-119.
Iacobellis, N. S., Cantore, P. L., Capasso, F. and Senatore, F. (2005). Antibacterial activity of Cuminum cyminum and Carum carvi Essential oils. Journal of Agricultural and Food Chemistry 53:57-61.
Iwu, M. M., Duncan, A. R. and Okunji, C. O. (1999). New antimicrobials of plant origin. In J. Janick (Ed.), Perspectives on new crops and new uses. Alexandria: ASHS Press.
Kumaran, A. and Karunakaran, R. J. (2007). Activity-guided isolation and identification of free radical-scavenging components from an aqueous extract of Coleus aromaticus. Food Chemistry 100:356-361.
Mandavia, M. K., Gajera, H. P., Andharia, J. H., Khandar, R. R. and Parameshwaram, M. (1999). Cell wall degradation enzymes in host pathogen interaction of Fusarium wilt of chick pea: Inhibitory effects of phenolic compounds. Indian Phytopathology 50:548-551.
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13:614-629.
Medina, A. S., Sosa, K. G., Pat, F. M. and Rodriguez, L. M. P. (2001). Evaluation of the biological activity of crude extracts from plants used in Yucatecan Traditional Medicine. Part II. DNA-interacting activity. Phytomedicine 8:236-239.
Mohana, D. C. and Raveesha, K. A. (2006). Anti-bacterial activity of Caesalpinia coriaria (Jacq.) Willd. against plant pathogenic Xanthomonas pathovars: an eco-friendly approach. Journal of Agricultural Technology 2:317-327.
Parekh, J. and Chanda, S. (2007). In vitro screening of antibacterial activity of aqueous and alcoholic extracts of various Indian plant species against selected plant pathogens from Enterobacteriaceae. African Journal of Microbiology Research 1:92-99.
Pezzuto, J. M., Mar, W., Lin, L. Z. and Cordell, G. A. (1991). DNA-based isolation and the structure elucidation of Budmunchiamines, novel macrocyclic alkaloids from Albizia amara. Heterocycles 32:1961-1967.
Pezzuto, J. M., Mar, W., Lin, L. Z., Cordell, G. A., Neszmelyi, A. and Wagner, H. (1992). Budmunchiamines D-I from Albizia amara. Phytochemistry 31:1795-1800.
Roy, S. and Chatterjee, P. (2010). A non-toxic antifungal compound from the leaves of Catharanthus roseus characterized as 5-hydroxy flavone by UV spectroscopic analysis and evaluation of its antifungal property by agar-cup method. Industrial Crops and Products 32:375-380.
Silva, A. C. R., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., Quaggio, R. B. and Monteiro-Vitorello, C. B. et al. (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-63.
Thippeswamy, S., Mohana, D. C., Abhishek, R. U. and Manjunath, K. (2013). Efficacy of bioactive compounds isolated from Albizia amara and Albizia saman as source of antifungal and antiaflatoxigenic agents. Journal für Verbraucherschutz und Lebensmittelsicherheit 8:297-305.
Watt, T. F., Vucur, M., Baumgarth, B., Watt, S. A. and Niehaus, K. (2009). Low molecular weight plant extract induces metabolic changes and the secretion of extracellular enzymes, but has a negative effect on the expression of the type-III secretion system in Xanthomonas campestris pv. campestris. Journal of Biotechnology 140:59-67.
Wiesner, K., Valenta, Z., Orr, D. E., Liede, V. and Kohan, G. (1968). Structure of Pithecolobine. III. The synthesis of the 1,5- and 1,3-desoxypithecolobines. Canadian Journal of Chemistry 46:3617-3624.