Allelopathic effect of sorghum root extract and its potential use as a bioherbicide
Main Article Content
Abstract
The bioherbicide of sorghum root extract had a significant effect on seed germination. It inhibited the seedling growth of test plants, i.e., rice (Oryza sativa) and mung bean (Vigna radiata). The test plant treatment significantly affected the radicle and plumule length, radicle and plumule fresh weight, and the radicle and plumule dry weight. Bioherbicide concentration, on the other hand, affected all observed variables i.e. normal and abnormal sprouts, radicle and plumule length, and radicle and plumule weight. The percentage of normal and abnormal sprouts, radicle and plumule length, and radicle fresh weight correlated with the test plant and bioherbicide concentration. The higher the concentration of sorghum root extract, the lower the normal sprouts, radicle length, plumula length, and the fresh weight of mung bean (representing broad-leaf weed) and rice (representing narrow-leaf weeds). The regression analysis showed that LC 50% sorghum root extract was 5.24% for rice and 4.93% for mung bean. In summary, sorghum root extract can be a bioherbicide to control both narrow and broadleaf weeds in marginal land of coastal environment.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Arowosegbe, S., Wintola, O. A. and Afolayan, A. J. (2012). Phytochemical constituents and allelopathic effect of Aloe ferox Mill. root extract on tomato. Journal of Medicinal Plants Research, 6:2094-2099.
Bhadoria, P. B. S. (2011). Allelopathy: A natural way towards weed management. American Journal of Experimental Agriculture, 1:7-20.
Cheema, Z. A. and Khaliq, A. (2000). Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi arid region of Punjab. Agriculture, Ecosystems & Environment, 79:105-112.
Cheema, Z. A., Asim, M. and Khaliq, A. (2000) Sorghum allelopathy for weed control in cotton (Gossypium Arboreum L.). International Journal of Agriculture and Biology, 37-41.
Cheema, Z. A., Khaliq, A. and Ali, K. (2002). Efficacy of sorgaab for weed control in wheat grown at different fertility levels. Pakistan Journal of Weed Science Research, 8:33-38.
Dayan (2006). Factors modulating the levels of the allelochemical sorgoleone in sorghum bicolor. Planta, 224:339-46.
Einhellig, F. A. and Souza, I. F. (1992). Phytotoxicity of sorgoleone found in grain sorghum root exudates. Journal of Chemical Ecology, 18:1-11.
Einhellig, F. A. (1995). Mechanism of action of allelochemicals in allelopathy. In: Inderjit, Dakhsini, K. M. M and Einhellig, F. A. (Eds.). Allelopathy, organism, processes, and applications, Washington DC: American Chemical Society, pp.96-116.
Franco, F. H. S., Machado, Y., Takahashi, J. A., Karam, D. and Garcia, Q. S. (2011). Quantificacao de sorgoleone em extratos e raizes de sorgosob diferentes periodos de armazenamento. Planta Daninha, Vicosa-MG, 29:953-962.
Fuentes-Gandara, F., Torres, A., Fernández-Ponce, M. T., Casas, L., Mantell, C., Varela, R. and Macias, F. A. (2019). Selective fractionation and isolation of allelopathic compounds from Helianthus annuus L. leaves by means of high-pressure techniques. The Journal of Supercritical Fluids, 143:32-41.
Fujii, Y. (2001). Screening and future exploitation of allelopathic plants as alternative herbicides with special reference to hairy vetch. Journal of Crop Production, 4:257-275.
Harsono, P. and Setyowati, N. (2020). Response and allelochemicals content of two sorghum varieties to manure. IOP Conference Series: Earth and Environmental Science, 518:012037. doi:10.1088/1755-1315/518/1/012037
Iqbal, J, Cheema, A. Z. and An, M. (2007). Intercropping of field crops in cotton for the management of purple nutsedge (Cyperus Rotundus L.). Plant and Soil, 300:163-171.
Jabran, K. (2017). Wheat allelopathy for weed control. In: Manipulation of allelopathic crops for weed control, Springer, Chambridge, pp.13-20.
Jabran, K., Mahajan, G., Sardana, V. and Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72:57-65.
Jesudas, A., Kingsley, J. and Ignacimuthu (2015). Sorgoleone from sorghum bicolor as a potent bioherbicide. Research Journal of Recent Sciences, 3:32-36.
Kandhro, M. N., Memon, H. R., Ansari, M. A. and Shah, A. N. (2015). Effect of allelopathic water extract of sorghum and sunflower on weed mortality and cotton yield. Sarhad Journal of Agriculture, 31:165-174.
Khaliq, A., Matloo, A., Khan, M. B. and Tanveer, A. (2013). Differential suppression of rice weed by allelopathic plant aqueous extracts. Planta Daninha, Vicosa-Mg, 31:21-28.
Kruse, M., Strandberg, M. and Strandberg, B. (2000). Ecological effects of allelopathic plants: A Review. NERI Technical Report. Departement of Terrestrial Ecologi.
Lim, C. J., Lim, C. K. and Ee, G. C. L. (2019). Allelopathic invasive plants as phytoinhibitor bioresource material in weed control: A review. Agriculture and Natural Resources, 53:439-448.
Malik, M. W. I., Hussain, I., and Baloch, M. S. (2019). Pennisetum glaucum aqueous extract suppresses growth of some weed species. Pakistan Journal of Weed Science Research, 25:337.
Modhej, A., Farhoudi, R. and Alikhani, R. G. E. (2021). The allelopathic effect of two barley Cultivars (Hordeum vulgare) on growth and physiological attributes of bindweed (Convolvulus arvensis) Rhizome. Journal of Plant Protection, 35:91-101.
Mubarak, A. R. and Sayed, A. M. (2009). Note on the influence of leaf extracts of nine trees on seed germination, radicle and hypocotyl elongation of maize and sorghum. International Journal of Agriculture and Biology, 11:340-342.
Naby, K. Y. and Ali, K. A. (2020). Effect of sorghum [Sorghum Bicolor (L.) Moench] aqueous extract on germination and seedling growth of wheat, wild oat, wild barley and canary grass. Journal of Advanced Pharmacy Education & Research, 10:190-196.
Narwal, S. S. (2000). Allelopathic interactions in multiple cropping systems. In Allelopathy in Ecological Agriculture and Forestry (pp. 141-157). Springer, Dordrecht.
Nurjanah, U., Setyowati, N. and Simarmata, M. (2020). Allelopathic potential of aqueous extract of Archidendron jiringa (jering) pods for weed control in swamp paddy field. International Journal of Agricultural Technology, 16:1153-1164.
Pabinru, A. M. (1979). Penelitian alelopati pada beberapa tanaman di tanah kering. Thesis. Institut Pertanian Bogor: Bogor, Indonesia.
Randhawa, M. A., Cheema, Z. A. and Ali, M. A. (2012) Allelopathic effect sorghum water extract on the germination and seedling growth of Trianthema Portulacastru. International Journal of Agriculture and Biological, 4:384.
Rao, V. S. (2000). Principles of Weed Science. Science Publishers Inc., California, USA.
Salisbury, F. B. and Ross, C. W. (1995). Fisiologi Tumbuhan. ITB Press. Bandung, Indonesia.
Santos, R. C., Ferraz, G. M. G., Albuquerque, M. B., Lima, L. M., Melo-Filho, P. A. and Ramos, A. R. (2014). Temporal expression of the sor1 gene and inhibitory effects of Sorghum bicolor L. Moench on three weed species. Acta Botanica Brasilica, 28:361-6.
Setyowati, N. and Suprijono, E. (2000). Efikasi alelopati teki formulasi cairan terhadap gulma Mimosa invisa dan Melochia corchorifolia (Allelopathic effect of yellow nutsegde on Mimosa invisa and Melochia corchorifolia). Jurnal Ilmu-Ilmu Pertanian Indonesia, 2:75-82.
Shafer, W. E. and Gorrison (1986). Allelopathic effects of soil incorporated asparagus roots on lettuce, tomato and asparagus seedling emergence. Horticulture Science, 21:82- 84.
Sitanggang, A. F. (2018). Prospek allelopati tanaman Sorghum bicolor sebagai salah satu metode pengendalian gulma. (Master Thesis). University of Bengkulu, Indonesia.
Skinner, E. R. M. (2006). Allelopathic effects of the cover crop Crotalaria juncea on weed and crop seedling germination and growth. (Dissertation). University of Georgia, Georgia.
Subagio, H. and Aqil, M. (2013). Pengembangan produksi sorgum di Indonesia. Seminar Nasional Inovasi Teknologi Pertanian.
Susilo, E., Setyowati, N., Nurjanah, U., Riwandi and Muktamar, Z. (2020). Sorghum germination inhibition using its water extract cultivated in swamplands with different irrigation patterns. IOP Conf. Series: Earth and Environmental Science, 694:012027. doi:10.1088/1755-1315/694/1/012027
Susilo, E., Setyowati, N., Nurjanah, U., Riwandi and Muktamar, Z. (2021). Effect of swamp irrigation pattern and sorghum extract concentration on sorghum seed sprout. Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020). P University of Bengkulu, Indonesia, pp.19-25.
Syafruddin, M., Harisudin, M. and Widiyanti, E. (2015). Strategi pengembangan sorgum di Kabupaten Wonogiri. Sepa, 12:70-81.
Yang, T., Zhang, M., Chen, D., Zheng, P. and Shi, F. (2020). Allelopathy of Medicago sativa L. soil extracts on Althaea rosea cavan. Journal of Agricultural Resources and Environment, 37:92-97.
Zhu, X., Weston, P., Godwin, I., Norton, S. and Weston, L. (2018). Investigation of root exudation and phytotoxic potential of diverse Sorghum spp. through regulation of sorgoleone. 21st Australasian Weeds Conference 2018: Weed Biosecurity-Protecting Our Future, Novotel Sydney Manly Pacific, Manly, Australia, 417 p.
Zimdahl, R. L. (2007). Fundamentals of Weed Science. Elsevier Inc. Fortcollins, Colorado.