Antimicrobial susceptibility of chili extracts against foodborne pathogens and food related bacteria
Main Article Content
Abstract
The comparative evaluation of antimicrobial activities of chili crude extract was inestigated using aqueous, 50 and 95% (v/v) ethanol. Chili crude extract demonstrated inhibitory potential against 25 tested microorganisms, including foodborne pathogens and food-related bacteria. The chili crude extract using 95% (v/v) ethanol solution had the highest efficacy on microbial inhibition. Time-killing analysis were evaluated. The lowest MIC and MBC of 25 bacterial stains was found in Vibrio cholerae DMST 9700 at 0.5% and 1.0% respectively. According to the Time killing analysis, the results indicated that the completed destruction phenomenon of bacterial mixture was detected at the concentration of more than 10.0%w/v of chili crude extract.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Bacon, K., Boyer, R., Denbow, C., O'Keefe, S., Neilson, A. and Williams, R. (2017). Antibacterial activity of jalapeño pepper (Capsicum annuum var. annuum) extract fractions against select foodborne pathogens. Food science & nutrition, 5:730-738.
Bagamboula, C. F., Uyttendaele, M. and Debevere, J. (2003). Antimicrobial effect of spices and herbs on Shigella sonnei and Schigella flexneri. Journal of Food Protection, 66:67-72.
Balouiri, M., Sadiki, M. and Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6:71-79.
Bowles, B. L. and Juneja, V. K. (1998). Inhibition of foodborne bacteria pathogens by naturally occurring food additives. Journal Food Safety, 18:101-112.
Burke, B. E., Baillie, J. E. and Olson, R. D. (2004). Essential oil of Australian lemon myrtle (Backhousia citrodora) in the treatment of molluscum contagiosum in children. Biomedicine and Paharmacotherapy, 58:245-247.
Conner, D. E. and Beuchat, L. R. (1984). Effects of essential oils from plants on growth of food spoilage yeasts. Journal Food Science, 49:429-434.
Delaquis, P. J. and Mazza, G. (1995). Antimicrobial properties of isothiocyyanates in food preservation. Food Technollogy, 49:73-84.
Delaquis, P. L., Stanich, K., Girard, B. and Mazza, G. (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International Journal of Food Microbiology, 74:101-109.
Dong, B. and Sun, C. (2021). Production of an invertebrate lysozyme of Scylla paramamosain in E. coli and evaluation of its antibacterial, antioxidant and anti-inflammatory effects. Protein Expression and Purification, 177:105745.
Dorantes, L., Colmenero, R., Hernandez, H., Mota, L., Jaramillo, M. E., Fernandez, E. and Solano, C. (2000). Inhibition of growth of some foodborne pathogenic bacteria by Capsicum annum extracts. International Journal of Food Microbiology, 57:125-128.
Dorman, H. J. D. and Deans, S. G. (2000). Antimicrobial agents from plants: antimicrobial activity of plant volatile oils. Journal of Applied Microbiology, 88:308-316.
Farbood, M. I., NacNeil, J. H. and Ostovar, K. (1976). Effect of rosemary spice extractive on growth of microoganisms in meat. Journal of Milk and Food Technology, 39:675.
Gayathri, N., Gopalakrishnan, M. and Sekar, T. (2016). Phytochemical screening and antimicrobial activity of Capsicum chinense Jacq. International Journal of Advances in Pharmaceutics.
Gurnani, N., Gupta, M., Mehta, D. and Mehta, B. K. (2016). Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). Journal of Taibah University for Science, 10:462-470.
Hammer, K. A., Carson, C. F. and Riley, T. V. (1999). Antimicrobial activity of essential oil and other plants extracts. Journal of Applied Microbiology, 86:985-990.
Hansen, B. N., Harvey, A. H., Coelho, J. A. P., Palavra, A. M. F. and Bruno, T. J. (2001). Solubility of Capsaicin and β-Carotene in Supercritical Carbon Dioxide and in Halocarbons†. Journal of Chemical & Engineering Data, 46:1054-1058.
Hayes, A. J. and Markovic, B. (2003). Toxicity of Australian essential oil Backhousia citriodora (lemon myrtle). Part 2. Absorption and histopathology following application to human skin. Food and Chemical Toxicology, 41:1409-1416.
Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I. and Smid, E. J. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46:3590-3595.
Hunsinger, B. (2005). Untersuchungen über die Auswirkungen der zukünftigen Eropäischen Desinfektionsmittelprüfung auf die Zulassung von Desinfektionsmitteln für die Tierseuchendesinfektion im Vergleich zu bisherigen Prüfungen nach den Richtlinien der DVG. Dr. Vet. Med. Dissertation, Freien Univertität Berlin, Germany.
Mejlholm, O. and Dalgaard, P. (2002). Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products. Letters in Applied Microbiology, 34:27-552.
Negi, P. S., Chauhan, A. S., Sadia, G. A., Rohinishree, Y. S. and Ramteke, R. S. (2005). Antioxidant antimicrobial activities of various seabuckthorn (Hippophae rhamnoides L.) seed extracts. Food Chemistry, 92:119-124.
Nikaido, H. and Vaara, M. (1985). Molecular basis of bacteria outer membrane permeability. Microbiology Reviews, 49:1-32.
Oh, Y. J., Song, A. Y. and Min, S. C. (2017). Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma. International Journal of Food Microbiology, 249:66-71.
Pinilla, C. M. B. and Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science & Emerging Technologies, 36:287-293.
Pol, I. E. and Smid, E. J. (1999). Combined action of nisin and carvacrol on Bacillus cereus and Listeria monocytogenes. Letters in Applied Microbiology, 29:166-170.
Rollyson, W. D., Stover, C. A., Brown, K. C., Perry, H. E., Stevenson, C. D., McNees, C. A., Ball, J. G., Valentovic, M. A. and Dasgupta, P. (2014). Bioavailability of capsaicin and its implications for drug delivery. Journal of Controlled Release, 196:96-105.
Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J. L. and Griffin, P. M. (2011). Foodborne illness acquired in the United States-major pathogens. Emerging infectious diseases, 17:7-15.
Scherrer, R. and Gerhardt, P. (1971). Molecular sieving by the Bacillus megatrium cell wall and protoplast. Journal of Bacteriology, 107:718-735.
Shelef, L. A., Jyothi, E. K. and. Bulgarelli, M. A. (1984). Growth of enteropathogenic and spoilabacteria in sage-containing broth and foods. Journal of Food Science, 49:737-809.
Sinclair, S. (1998). Chinese herbs: a clinical rewiew of Astragalus, Ligusticum, and Schizandrae. Alternative Medicine Rewiew, 3:388-344.
Sivropoulou, A., Papanikolaou, E., Nikolanou, C., Kokkini, S., Lanaras, T. and Arsenakis, M. (1996). Antimicrobial and cytotoxic activities of Origanum essential oils. Journal of Agricultural and Food Chemistry, 44:1202-1205.
Smith-Plamer, A., Stewart, J. and Fyfe, L. (2001). The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiology, 18:463-470.
Tassou, C., Drosinos, E. H. and Nychas, G. J. E. (1995). Effects of essential oil from mint (Mentha piperita) on Salmonella Enteritidis and Listeria monocytogenes in model food system at 4°C and 10°C. The Journal of applied bacteriology, 78:593-600.
Valle, D. L., Andrade, J. I., Puzon, J. J. M., Cabrera, E. C. and Rivera, W. L. (2015). Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pacific Journal of Tropical Biomedicine, 5:532-540.
Voravuthikunchai, S. P., Lortheeranuwat, A., Ninprom, T. Popaya, W., Pongpaichit, S. and Supawita, T. (2002). Antimicrobial activity of Thai medicinal plants against enterohaemorrhagic Escherichia coli O157:H7. Clinical Microbiology and Infection, 8:116-117.
Wilkinson, J. M., Hipwel, M., Ryan, T. and Cavanagh, H. M. (2003). Bioactivity of Backhousia citrodora: antimicrobial and antifungal activity. Journal Agricultural and Food Chemistry, 51:467-490.
Zaika, L. L. (1988). Spices and herbs: their antibacterial activity and its determination. Journal of Food Safety, 23:97-118.