Bioactive properties and therapeutic potential of Padina australis Hauck (Dictyotaceae, Ochrophyta)

Main Article Content

Arguelles, E. D. L. R.
Sapin, A. B.

Abstract

Seaweeds are known sources of biologically active substances with diverse bioactive properties important in the synthesis of medically important novel drugs. The bioactive properties of brown macroalga, Padina australis Hauck were studied. Results showed that the seaweed contain a total phenolic content of 13.85 ± 0.04 mg GAE/g. Antioxidant efficiency of P. australis are characterized by having potent ABTS+ scavenging activity and high copper reduction capacity with IC50 value of 138 μg/ml and 24.47 μg/ml respectively. Evaluation of tyrosinase and elastase inhibition properties showed that P. australis extract has potent inhibitory activity with IC50 of 32 μg/ml and IC50 of 93 μg/ml, respectively more effective than kojic acid and tocopherol. In addition, in vitro assessment of alpha-glucosidase and alpha-amylase inhibition property of the alga showed that P. australis extract have effective inhibitory activity with IC50 values of 5.90 μg/ml and 41 μg/ml, respectively, more potent as compared to acarbose (standard anti-diabetic drug). The seaweed extract exhibited potent antibacterial activities against medically important bacterial pathogens such as Klebsiella pneumoniae (Minimum Inhibitory Concentration (MIC) = 125 μg/ml), Methicillin-resistant Staphylococcus aureus (MIC = 250 μg/ml), Pseudomonas aeruginosa (MIC = 125 μg/ml), and Staphylococcus aureus (MIC = 250 μg/ml). The current investigation is a pioneering study in the Philippines that shows the potential of P. australis as source of bioactive compounds with important pharmacological applications.

Article Details

How to Cite
Arguelles, E. D. L. R., & Sapin, A. B. (2022). Bioactive properties and therapeutic potential of Padina australis Hauck (Dictyotaceae, Ochrophyta). International Journal of Agricultural Technology, 18(1), 13–34. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6532
Section
Original Study

References

Abdelhamid, A., Jouini, M., Amor, H. B. H., Mzoughi, Z., Dridi, M., Said, R. B. and Bouraoui, A. (2018). Phytochemical analysis and evaluation of the antioxidant, anti-inflammatory, and antinociceptive potential of phlorotannin-rich fractions from three Mediterranean brown seaweeds. Marine Biotechnology, 20:60-74.

Alpinar, K., Özyurek, M., Kolak, U., Guclu, K., Aras, Ç., Altun, M., Celik, S. E., Berker, K. I., Bektasoglu, B. and Ampal, R. (2009). Antioxidant capacities of some food plants wildly grown in Ayvalik of Turkey. Food Science and Technology Research, 15:59-64.

Arguelles, E. D. L. R. (2021a). Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21:65-77.

Arguelles, E. D. L. R. (2021b). Evaluation of antioxidant capacity, tyrosinase inhibition, and antibacterial activities of brown seaweed, Sargassum ilicifolium (Turner) C. Agardh 1820 for cosmeceutical application. Journal of Fisheries and Environment, 45:64-77.

Arguelles, E. D. L. R. and Sapin, A. B. (2021a). Nutrient composition, antioxidant, and antibacterial activities of Ulva prolifera O. F. Müller. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, https://doi.org/10.15578/squalen.550.

Arguelles, E. D. L. R. and Sapin, A. B. (2021b). Chemical composition and bioactive properties of Sargassum aquifolium (Turner) C. Agardh and its potential for pharmaceutical application. Philippine Journal of Science, 151:9-24.

Arguelles, E. D. L. R. (2020). Evaluation of nutritional composition and in vitro antioxidant and antibacterial activities of Codium intricatum Okamura from Ilocos Norte (Philippines). Jordan Journal of Biological Science, 13:375-382.

Arguelles, E. D. L. R. and Sapin, A. B. (2020a). In vitro antioxidant, alpha-glucosidase inhibition, and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta). Asia-Pacific Journal of Science and Technology, 25: https://so01.tci thaijo.org/index.php/APST/article/view/240714/165247.

Arguelles, E. D. L. R. and Sapin, A.B. (2020b). Bioactive properties of Sargassum siliquosum J. Agardh (Fucales, Phaeophyta) and its potential as source of skin-lightening active ingredient for cosmetic application. Journal of Applied Pharmaceutical Sciences, 10:51-58.

Arguelles, E. D. L. R. and Sapin, A. B. (2020c). Bioprospecting of Turbinaria ornata (Fucales, Phaeophyceae) for cosmetic application: antioxidant, tyrosinase inhibition and antibacterial activities. International Society for Southeast Asian Agricultural Sciences, 26:30-41.

Arguelles, E. D. L. R., Monsalud, R. G. and Sapin, A. B. (2019). Chemical composition and In vitro antioxidant and antibacterial activities of Sargassum vulgare C. Agardh from Lobo, Batangas, Philippines. International Society for Southeast Asian Agricultural Sciences, 25:112-122.

Arguelles, E. D. L. R. (2018). Proximate analysis, antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian Journal of Microbiology, Biotechnology and Environmental Science, 20:150-158.

Baek, S. H., Cao, L., Jeong, S. J., Kim, H-R, Nam, T. K. and Lee, S. G. (2021). The comparison of total phenolics, total antioxidant, and anti-tyrosinase activities of Korean Sargassum species. Journal of Food Quality, Article ID 6640789. https://doi.org/10.1155/2021/6640789.

Boonchum, W., Peerapornpisal, Y., Kanjanapothi, D., Pekkoh, J., Pumas, C., Jamjai, U., Amornlerdpison, D., Noiraksar, T. and Vacharapiyasophon, P. (2011). Antioxidant activity of some seaweed from the Gulf of Thailand. International Journal of Agriculture and Biology, 13:95-99.

Čagalj, M., Skroza, D., Tabanelli, G., Özogul, F. and Šimat, V. (2021). Maximizing the antioxidant capacity of Padina pavonica by choosing the right drying and extraction methods. Processes, 9:587. https:// doi.org/10.3390/pr9040587

Canoy, J. L. and Bitacura, J. G. (2018). Cytotoxicity and antiangiogenic activity of Turbinaria ornata Agardh and Padina australis Hauck ethanolic extracts. Analytical Cellular Pathologly, 3709491. https://doi.org/10.1155/2018/3709491.

Chakraborty, K., Joseph, D. and Praveen, N. K. (2013). Antioxidant activities and phenolic contents of three red seaweeds (Division : Rhodophyta) harvested from the Gulf of Mannar of Peninsular India. Journal of Food Science and Technology, 52:1924-1935.

Chew, Y. L., Lim, Y. Y., Omar, M. and Khoo, K. S. (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Science and Technology, 41:1067-1072.

Chernane, H., Mansori, M., Latique, S. and El-Kaoua M. (2014). Evaluation of antioxidant capacity of methanol extract and its solvent fractions obtained from four Moroccan macroalgae species. European Scientific Journal, 10:35-48.

Chong, C. W., Hii, S. L. and Wong, C. L. (2011). Antibacterial activity of Sargassum polycystum C. Agardh and Padina australis Hauck (Phaeophyceae). African Journal of Biotechnology, 10:14125-14131.

Firdaus, M., Nurdiani, R. and Prihanto, A. A. (2015). Antihyperglycemic of Sargassum sp. extract. In: Kim S K, Chojnacka K eds. Marine algae extracts: Processes, products and applications. Weinheim: Wiley, pp.381-394.

Freitas, R., Martins, A., Silva, J., Alves, C., Pinteus, S., Alves, J., Teodoro, F., Ribeiro, H. M., Gonçalves, L., Petrovski, Ž., Branco, L. and Pedrosa, R. (2020). Highlighting the biological potential of the brown seaweed Fucus spiralis for skin applications. Antioxidants, 9:611. https://doi.org/10.3390/antiox9070611

Fu, C. W. F., Ho, C. W., Yong, W. T. L., Abas, F. and Tan, C. P. (2015). Effects of phenolic antioxidants extraction from four selected seaweeds obtained from Sabah. PeerJ PrePrints, 3: e1249v1. DOI: 10.7287/ peerj.preprints.1249v1.

Gao, L., Wang, S., Oomah, B. D. and Mazza, G. (2002). Wheat quality: Antioxidant activity of wheat millstreams. In: Ng P, Wrigley CW eds. Wheat Quality Elucidation. St. Paul, Minnesota, USA: AACC International, pp. 219-233.

Gunathilaka, T. L., Samarakoon, K. W., Ranasinghe, P. and Peiris, L. D. C. (2019). In vitro antioxidant, hypoglycemic activity, and identification of bioactive compounds in phenol-rich extract from the marine red algae Gracilaria edulis (Gmelin) Silva. Molecules, 24(20):3708.

Hapsari, R., Elya, B. and Amin, J. (2012). Formulation and evaluation of antioxidant and tyrosinase inhibitory effect from gel containing the 70% ethanolic Pleurotus ostreatus extract. International Journal of Medicinal and Aromatic Plants, 2:135-140.

Husni, A., Pratiwi, T., Samudra, A. G. and Nugroho, A. E. (2018). In vitro antidiabetic activity of Sargassum hystrix and Eucheuma denticulatum from Yogyakarta Beach of Indonesia. Proceedings of the Pakistan Academy of Sciences B. Life and Environmental Sciences, 55:1-8.

Hwang, P. A., Hung, Y. L., Tsai, Y. K., Chien, S. Y. and Kong, Z. L. (2015). The brown seaweed Sargassum hemiphyllum exhibits α-amylase and α-glucosidase inhibitory activity and enhances insulin release in vitro. Cytotechnology, 67:653-660.

Kim, K. Y., Nam, K. A., Kurihara, H. and Kim, S. M. (2008). Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry, 69: 2820-2825.

Lee, K. W., Heo, S. H., Lee, J., Park, S. I., Kim, M., and Shin. M. S. (2020). Antimicrobial, Antioxidative, Elastase and Tyrosinase Inhibitory Effect of Supercritical and Hydrothermal Asparagopsis Armata Extract. International Journal of Advanced Culture Technology, 8:231-240.

Mashjoor, S., Yousefzadi, M., Esmaeili, M. A. and Rafiee, R. (2016). Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology, 68:1717-1726.

Mekinić, I. G., Šimat, V., Botić, V., Crnjac, A., Smoljo, M., Soldo, B., Ljubenkov, I., Čagalj, M. and Skroza, D. (2021). Bioactive phenolic metabolites from adriatic brown algae Dictyota dichotoma and Padina pavonica (Dictyotaceae). Foods, 10:1187. https://doi.org/10.3390/ foods10061187.

Mekinić, I. G., Skroza, D., Šimat, V., Hamed, I., Čagali, M. and Perković, Z. P. (2019). Phenolic Content of Brown Algae (Pheophyceae) Species: Extraction, Identification, and Quantification. Biomolecules, 244. doi:10.3390/biom9060244.

Moon, J. Y., Yim, E. Y., Song, G., Lee, N. H. and Yun, C. G. (2010). Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants. EurAsian Journal of BioSciences, 4:41-53.

Nair, S. S., Kavrekar, V. and Mishra, A. (2013). In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. European Journal of Experimental Biology, 3:128-132.

Nuñez Selles, A., Castro, H. T. V., Aguero, J. A., Gonzalez, J. G., Naddeo, F., De Simone, F. and Pastrelli, L. (2002). Isolation and quantitative analysis of phenolic antioxidants, free sugars and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. Journal of Agricultural and Food Chemistry, 50:762-766.

Nwosu, F., Morris, J., Lund, V. A., Stewart, D., Ross, H. A. and McDougall, G. J. (2011). Antiproliferative and potential antidiabetic effects of phenolic-rich extracts from edible marine algae. Food Chemistry, 126:1006-1012.

Pirian, K., Moein, S., Sohrabipour, J., Rabiei, R. and Blomster, J. (2017). Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf. Journal of Applied Phycology, 29:3151- 3159.

Phoboo, S. (2015). In vitro assays of anti-diabetic and anti-hypertensive potential of some traditional edible plants of Qatar. Journal of Medicinally Active Plants, 4:22-29.

Ponnan, A., Ramu, K., Marudhamuthu, M., Marimuthu, R., Siva, K. and Kadarkarai, M. (2017). Antibacterial, antioxidant and anticancer properties of Turbinaria conoides (J. Agardh) Kuetz. Clinical Phytoscience, 3:1-10.

Puspita, M., Déniel, M., Widowati, I., Radjasa, O. K., Douzenel, P., Marty, C., Vandanjon, L., Bedoux, G. and Bourgougnon, N. (2017). Total phenolic content and biological activities of enzymatic extracts from Sargassum muticum (Yendo) Fensholt. Journal of Applied Phycology, 29:2521-2537.

Re, R., Pellegrine, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26:1231-1237.

Rhimou, B., Hassane, R., José, M. and Nathalie, B. (2010). The antibacterial potential of the seaweeds (Rhodophyaceae) of the Strait of Gibraltar and the Mediterranean coast of Morocco. African Journal of Biotechnology, 9: 6365-6372.

Sanger, G., Rarung, L. K., Kaseger, B. E., Assa, J. R. and Agustin, A.T. (2019). Phenolic content and antioxidant activities of five seaweeds from North Sulawesi, Indonesia. AACL Bioflux, 12:2041-2050.

Sari, D. M., Anwar, E., Nurjanah and Arifianti, A. E. (2019). Antioxidant and tyrosinase inhibitor activities of ethanol extracts of brown seaweed (Turbinaria conoides) as lightening ingredient. Pharmacognosy Journal, 11:379-382.

Sasidharan, S., Darah, I. and Noordin, M. K. M. J. (2010). In vitro antimicrobial activity against Pseudomonas aeruginosa and acute oral toxicity of marine algae Gracilaria changii. New Biotechnology, 27:390-396.

Sivagnanam, S. R., Yin, S., Choi, J. H., Park, Y. B., Woo, H. C. and Chun, B. S. (2015). Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Marine Drugs, 13:3422-3442.

Sivaramakrishnan, T., Swain, S., Saravanan, K., Kiruba, S. R., Roy, S. D., Biswas, L. and Shalini, B. (2017). In vitro antioxidant and free radical scavenging activity and chemometric approach to reveal their variability in green macroalgae from South Andaman Coast of India. Turkish Journal of Fisheries and Aquatic Sciences, 17:639-648.

Srikong, W., Bovornreungroj, N., Mittraparparthorn, P. and Bovornreungroj, P. (2017). Antibacterial and antioxidant activities of differential solvent extractions from the green seaweed Ulva intestinalis. ScienceAsia, 43:88-95.

Susano, P., Silva, J., Alves, C., Martins, A., Gaspar, H., Pinteus, S., Mouga, T., Goettert, M. I., Petrovski, Z., Branco, L. B. and Pedrosa, R. (2021). Unravelling the dermatological potential of the brown seaweed Carpomitra costata. Marine Drugs, 19:135. https://doi.org/10.3390/md19030135

Trono, G. C. Jr. (1997). Field guide and atlas of the seaweed resources of the Philippines. Manila: Bookmark Inc. 303p.