Partial Sequence Analysis of Cellulose Synthase OsCESA4 and OsCESA9 Genes in Native Upland Rice, Thailand

Main Article Content

Laosutthipong, C.
Seritrakul, P.
Na Chiangmai, P.

Abstract

Cellulose is a major component of plant cell which found in both primary and secondary cell wall and synthesized by cellulose synthase (CESA) complexes. The partial sequences of OsCESA4 and OsCESA9 genes in seven varieties of native upland rice were determined.. The results found that OsCESA4 sequences showed the similarities to Oryza sativa Japonica (98.7-99.5%) and Oryza sativa Indica (97.5-99.5%). While all seven OsCESA9 sequences revealed the same identity to both Oryza sativa Japonica (98.46%) and Oryza sativa Indica (98.46%). Since, lodging problems in the native upland rice which has been cultivated in Prachuap Khiri Khan Province (Pala U village) still unsolved. Therefore, the analysis of cellulose synthase genes of these varieties would be used to fulfill the genetic information for further upland rice breeding improvement

Article Details

How to Cite
Laosutthipong, C., Seritrakul, P., & Na Chiangmai, P. (2022). Partial Sequence Analysis of Cellulose Synthase OsCESA4 and OsCESA9 Genes in Native Upland Rice, Thailand. International Journal of Agricultural Technology, 18(1), 241–256. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6611
Section
Original Study

References

Ahmad, F., Hanafi, M. M., Hakim, M. A., Rafii, M. Y., Arolu, I. W. and Akmar Abdullah, S. N. (2015). Genetic Divergence and Heritability of 42 Coloured Upland Rice Genotypes (Oryzasativa) as Revealed by Microsatellites Marker and Agro-Morphological Traits. PLOS ONE, 10(9), e0138246. doi:10.1371/journal.pone.0138246

Ambavaram, M. M. R., Krishnan, A., Trijatmiko, K. R. and Pereira, A. (2010). Coordinated Activation of Cellulose and Repression of Lignin Biosynthesis Pathways in Rice Plant Physiology, 155: 916-931. doi:10.1104/pp.110.168641

Brown, J., Malcolm, R., Saxena, I. M., andKudlicka, K. (1996). Cellulose biosynthesis in higher plants. Trends in plant science, 1:149-156.

Chen, X.-G., Shi, C.-Y., Yin, Y.-P., Wang, Z.-L., Shi, Y.-H., Peng, D.-L., Ni, Y.-L. and Cai, T. (2011). Relationship between Lignin Metabolism and Lodging Resistance in Wheat. ACTA AGRONOMICA SINICA, 37:1616-1622. doi:10.3724/SP.J.1006.2011.01616

Chen, X., Xu, P., Zhou, J., Tao, D. and Yu, D. (2018). Mapping and breeding value evaluation of a semi-dominant semi-dwarf gene in upland rice. Plant Divers, 40:238-244. doi:10.1016/j.pld.2018.09.001

Chuchert, S., Nualsri, C., Junsawang, N. and Soonsuwon, W. (2019). Genetic diversity, genetic variability, and path analysis for yield and its components in indigenous upland rice (Oryza sativa L. var. glutinosa).

Coelho, G., Brondani, C., Hoffmann, L., Valdisser, P., Borba, T. C. O., Mendonça, J., Rodrigues, L. and Menezes, I. (2017). Genetic diversity of high performance cultivars of upland and irrigated Brazilian rice. Genetics and Molecular Research, 16. doi:10.4238/gmr16039793

Doblin, M. S., Kurek, I., Jacob-Wilk, D. and Delmer, D. P. (2002). Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol, 43:1407-1420. doi:10.1093/pcp/pcf164

Hall, T. (1999). BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT.

Kadidaa, B., Sadimantara, G., Suaib, S., Safuan, L. and Muhidin, M. (2017). Genetic Diversity of Local Upland Rice (Oryza sativa L.) Genotypes Based on Agronomic Traits and Yield Potential in North Buton, Indonesia. Asian Journal of Crop Science, 9:109-117. doi:10.3923/ajcs.2017. 109.117

Karladee, D., Boonsit, P., Suriyong, S. and Jamjod, S. (2012). Population heterogeneity of upland rice in northern Thailand. Thai Journal of Agricultural Science, 45:99-104.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 16:111-120. doi:10.1007/bf01731581

Kong, E., Liu, D., Guo, X., Yang, W., Sun, J., Li, X., Zhan, K., Cui, D., Lin, J. and Zhang, A. (2013). Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 1:43-49. doi:https://doi.org/10.1016/j.cj.2013.07.012

Kumar, S., Stecher, G., Li, M., Knyaz, C., andTamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35(6), 1547-1549. doi:10.1093/molbev/msy096

Laosutthipong, C., Seritrakul, P. and Na Chiangmai, P. (2019). Lignin biosynthesis genes (OsPAL and Os4CL3) sequencing of native upland rice varieties from Pala U Village, Thailand. International Journal of Agricultural Technology, 15:947-958.

Li, F., Liu, S., Xu, H. and Xu, Q. (2018). A novel FC17/CESA4 mutation causes increased biomass saccharification and lodging resistance by remodeling cell wall in rice. Biotechnology for Biofuels, 11: 298. doi:10.1186/s13068-018-1298-2

Li, F., Xie, G., Huang, J., Zhang, R., Li, Y., Zhang, M., Wang, Y., Li, A., Li, X., Xia, T., Qu, C., Hu, F., Ragauskas, A. J. and Peng, L. (2017). OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnology Journal, 15:1093-1104. doi:https://doi.org/10.1111/pbi.12700

Mustikarini, E. D., Prayoga, G. I., Santi, R. and Hairul, H. (2021). Genetic parameters of F6 upland rice with lodging resistance derived from landraces x national varieties. IOP Conference Series: Earth and Environmental Science, 741:012010. doi:10.1088/1755-1315/741/1/012010

Na Chiangmai, P., Meetum, P., Vechpong, T. and Brooks, S. (2021). Root and shoot of local upland rice varieties response to various inorganic phosphorus levels.

Na Chiangmai, P., Yamying, M., Meetum, P., Brooks, S., Rienghlam, P., Raksasiri, B., Chiangmai, N. and Bv, R. (2019). How some native upland rice and cultivated lowland rice varieties responded to callus induction and regeneration medium?

Narenoot, K., Monkham, T., Chankaew, S., Songsri, P., Pattanagul, W. and Sanitchon, J. (2017). Evaluation of the tolerance of Thai indigenous upland rice germplasm to early drought stress using multiple selection criteria. Plant Genetic Resources, 15:109-118. doi:10.1017/ S1479262115000428

Ndjiondjop, M. N., Semagn, K., Sow, M., Manneh, B., Gouda, A. C., Kpeki, S. B., Pegalepo, E., Wambugu, P., Sié, M. and Warburton, M. L. (2018). Assessment of Genetic Variation and Population Structure of Diverse Rice Genotypes Adapted to Lowland and Upland Ecologies in Africa Using SNPs. Front Plant Sci, 9:446. doi:10.3389/fpls.2018.00446

Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014). New Approach to Increasing Rice Lodging Resistance and Biomass Yield Through the Use of High Gibberellin Producing Varieties. PLOS ONE, 9: e86870. doi:10.1371/journal.pone.0086870

Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., Asano, K., Ochiai, Y., Ikeda, M., Nishitani, R., Ebitani, T., Ozaki, H., Angeles, E., Hirasawa, T. and Matsuoka, M. (2010). New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nature communications, 1:132. doi:10.1038/ncomms1132

Phapumma, A., Monkham, T., Chankaew, S., Kaewpradit, W., Harakotr, P. and Sanitchon, J. (2020). Characterization of indigenous upland rice varieties for high yield potential and grain quality characters under rainfed conditions in Thailand. Annals of Agricultural Sciences, 65:179-187.

Saito, K., Asai, H., Zhao, D., Laborte, A. G. and Grenier, C. (2018). Progress in varietal improvement for increasing upland rice productivity in the tropics. Plant Production Science, 21:145-158. doi:10.1080/1343943X.2018.1459751

Shah, L., Yahya, M., Shah, S. M. A., Nadeem, M., Ali, A., Ali, A., Wang, J., Riaz, M. W., Rehman, S., Wu, W., Khan, R. M., Abbas, A., Riaz, A., Anis, G. B., Si, H., Jiang, H. and Ma, C. (2019). Improving Lodging Resistance: Using Wheat and Rice as Classical Examples. Int J Mol Sci, 20(17). doi:10.3390/ijms20174211

Somerville, C. (2006). Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol, 22:53-78. doi:10.1146/annurev.cellbio.22.022206.160206

Taylor, N. G. (2008). Cellulose biosynthesis and deposition in higher plants. New Phytologist, 178:239-252. doi:https://doi.org/10.1111/j.1469-8137.2008.02385.x

Tuhina-Khatun, M., Hanafi, M., Rafii, M., Wong, M.-Y., Salleh, F. and Ferdous, J. (2015). Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L.) Genotypes Based on Quantitative Traits. BioMed research international, 2015:290861. doi:10.1155/2015/290861

Vanlalsanga, S. Y. T. (2019). Genetic Diversity and Population Structure in Upland Rice (Oryza sativa L.) of Mizoram, North East India as Revealed by Morphological, Biochemical and Molecular Markers. Biochem Genet, 57:421-442. doi:10.1007/s10528-018-09901-1

Vechpong, T., Chaingmai, P. N. and Pompranee, P. (2015). Participation of Community in Knowledge Management: Case Study of Paganyaw Way of Upland Rice Cultivation in Prachuap Khiri Khan. International Journal of Behavioral Science, 10:13-20.

Wang, D., Yuan, S., Yin, L., Zhao, J., Guo, B., Lan, J. and Li, X. (2012). A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice. Plant Sci, 196:117-124. doi:10.1016/j.plantsci.2012.08.002

Wang, L., Guo, K., Li, Y., Tu, Y., Hu, H., Wang, B., Cui, X. and Peng, L. (2010). Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC plant biology, 10:282-282. doi:10.1186/1471-2229-10-282

Whankaew, S., Kaewmanee, S., Ruttajorn, K. and Phongdara, A. (2020). Indel marker analysis of putative stress-related genes reveals genetic diversity and differentiation of rice landraces in peninsular Thailand. Physiol Mol Biol Plants, 26:1237-1247. doi:10.1007/s12298-020-00816-z

Wu, L., Zhang, W., Ding, Y., Zhang, J., Cambula, E. D., Weng, F., Liu, Z., Ding, C., Tang, S. and Chen, L. (2017). Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in japonica rice (Oryza sativa L.). Frontiers in Plant Science, 8:881.

Xiaozhi, M., Chunmei, L., Rui, H., Kuan, Z., Qian, W., Chongyun, F., Wuge, L., Changhui, S., Pingrong, W., Feng, W. and Xiaojian, D. (2021). Rice. doi:10.21203/rs.3.rs-696804/v1

Ye, Y., Wang, S., Wu, K., Ren, Y., Jiang, H., Chen, J., Tao, L., Fu, X., Liu, B. and Wu, Y. (2021). A Semi-Dominant Mutation in OsCESA9 Improves Salt Tolerance and Favors Field Straw Decay Traits by Altering Cell Wall Properties in Rice. Rice (N Y), 14:19. doi:10.1186/s12284-021-00457-0

Zhang, B., Deng, L., Qian, Q., Xiong, G., Zeng, D., Li, R., Guo, L., Li, J. and Zhou, Y. (2009). A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 71:509-524. doi:10.1007/s11103-009-9536-4

Zhu, G., Li, G., Wang, D., Yuan, S. and Wang, F. (2016). Changes in the Lodging-Related Traits along with Rice Genetic Improvement in China. PLOS ONE, 11:e0160104. doi:10.1371/journal.pone.0160104