Eco-physiological manipulation by using humic acid and micronutrient for improving soil biological quality and rice yield in coastal agricultural land
Main Article Content
Abstract
Coastal agricultural land generally has some characteristics such as water stress and lack of nutrients, low organic matter content, high salinity, high temperature and strong wind, thereby causing low rice yield. Besides, humic acid and micronutrients’ application ameliorates soils for a better rice yield. The importance of humic acid and micronutrients compound mixed with biological fertilizers to soil biological quality and rice yield in an agricultural coastal land were recorded from July to December 2020 in Beringin Raya, Muara Bangkahulu sub-district, Bengkulu City. The result showed the Inpago 10 was the highest productive variety compared to Red and White varieties, while the coastal land ameliorated with humic acid produced the highest Azotobacter population, PSB, AMF colonization in the root system, and rice yield. Inpago 10 and humic acid treatment combination makes soil more basic and produced the highest weight of 1000-grain and milled dry rice.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ahmed, A. H. H., Darwish, E., Hamoda, S. A. F. and Alobaidy, M. G. (2013). Effect of putrescine and humic acid on growth, yield and chemical composition of cotton plants grown under saline soil conditions. American-Eurasian Journal of Agriculture Environmental Science, 13:479-497.
Ahmed, O. H., Aminuddin, H. and Husni, M. H. A. (2006). Effect of urea, humic acid and phosphate interactions in fertilizer microsites on ammonia volatilization and soil ammonium and nitrate contents. International Journal of Agricultural Research, 1:25-31.
Anyaoham, C., Adegbehingbe, F., Uba, U., Popoola, B., Gracen., Mande, S., Onotugoma, E. and Fofana, M. (2018). Genetic diversity of selected upland ricegenotypes (Oryza sativa l.) for grain yield andrelated traits. International Journal of Plant & Soil Science, 22:1-9.
Aref, F. (2012). Manganese, iron, and copper contents in leaves of maize plant (Zea mays L.) grown with different boron and zinc micronutrients. African Journal of Biotechnology, 11:896-903.
Bertham, Y. H., Nusantara, A. D. and Murcitro, B. G. (2019). Peningkatan adaptibilitas padi gogo melalui inokulasi pupuk hayati dan biokompos dalam meningkatkan pertumbuhan dan produktivitas di kawasan pesisir. Laporan Penelitian Unggulan UNIB. Bengkulu.
Canellas, L. P. and Olivares, F. L. (2014). Physiological responses to humic substances as plant growthpromoter. Chemistry and Biological Technology for Agriculture, 1:1-11.
Debez, A., Hamed, K. B., Grignon, C. and Abdelly, C. (2004). Salinity effects on germination, growth, and seed production of the halophyte Cakilemaritima. Plant and Soil, 262:179-189.
Eshwar, M., Srilatha, M., Rekha, K. B. and Sharma, S. H. K. (2017). Effect of humic substances (humic, fulvic acid) and chemical fertilizers on nutrient uptake, dry matter production of aerobic rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry, 6:1063-1066.
Fahad, S., Hussain, S., Matloob, A., Khan, F. A., Khaliq, A., Saud, S., Hassan, S., Shan, D., Khan, F., Ullah, N., Faiq, M., Khan, M. R., Tareen, A. K., Khan, A., Ullah, A., Ullah, N. and Huang, J. (2014). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulators, 75:391-404.
Ferrara, G. and Brunetti, G. (2010). Effect of the times ofaplication of a soil humic acid on berry quality oftable grape (Vitis vinifera L.) cv Italia. Spanish Journal Agricultural Research, 8:817-822.
Graham, R. D. and Welch, R. M. (2002). Plant Food Micronutrient Composition and Human Nutrition. Communication of Soil Science & Plant Analysis, 31:1627-1640.
Heil, C. A. (2005). Influence of humic, fulvic andhydrophilic acids on the growth, photosynthesis and respiration of the dinoflagelatte Prorocentrumminimum (Pavillard) Schiller. Harmful Algae, 4:603-618.
Herawati, R., Masdar and Alnopri (2019). Genetic analysis of grain yield of F4 populations for developing new type of upland rice. SABRAO Journal of Breeding and Genetics, 51:68-79.
Huang, X. H., Wei, X. H., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C. R., Lu, T., Zhang, Z., Li, M., Fan, D. L., Guo, Y. L., Wang, A. H., Wang, L., Deng, L. W., Li, W. J., Lu, Y. Q., Weng, Q. J., Liu, K. Y., Huang, T., Zhou, T. Y., Jing, Y. F., Li, W., Lin, Z., Buckler, E. S., Qian, Q., Zhang, Q. F., Li, J. Y. and Han, B. (2010). Genomewide association studies of 14 agronomic traits in rice landraces. Natural Genetics, 42:961-967.
Ifansyah, H. (2013). Soil pH and solubility of aluminum, iron, and phosphorus in ultisols: the roles ofhumicacid. Journal of Tropical Soils, 18:203-208.
Ikeda, M., Miura, K., Aya, K., Kitano, H. and Matsuoka, M. (2013). Genes offering the potential for designing yieldrelated traits in rice. Current Opinion in Plant Biology, 16:213-220.
Joseph, E. A. and Mohanan, K. V. (2013). A study on the effect of salinity stress on the growth and yield of some native rice cultivars of Kerala State of India. Agriculture, Forestry and Fisheries, 2:141-150.
Kanawapee, N., Sanitchon, J., Srihaban, P. and Theerakulpisut, P. (2013). Physiological changes during development of rice (Oryza sativa L.) varieties differing in salt tolerance under saline field condition. Plant Soil, 370:89-101.
Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R. and Britto, D. T. (2013). Sodium as nutrient and toxicant. Plant Soil, 369:1-23.
Kumar, D., Singh, A. P., Rahaand, P. and Singh, CM. (2014). Effects of potassium humate and chemical fertilizers on growth, yield and quality of rice (Oryza Sativa L.). Bangladesh Journal of Botany, 43:183-189.
Mauad, M., Crusciol, C. A. C., Filho, H. G. and Corrêa, J. C. (2003). Nitrogen and silicon fertilization of upland rice. Scientia Agricola, 60:761-765.
Mindari, W., Aini, N., Kusuma, Z. and Syekhfani (2014). Effects of humic acid-based buffer + cation on chemical characteristicsof saline soils and maize growth. Journal of Degraded and Mining Lands Management, 2:259-268.
Osman, E. A. M., EL-Masry, A. A. and Khatab, K. A. (2013). Effect of nitrogen fertilizer sources and foliar spray ofhumic and/or fluvicacids on yield and quality of rice plants. Advances Applied of Science and Research, 4:174-183.
Oyewole, O. A. and Kalejaiye, O. A. (2012). The antimicrobial activities of ethanolic extracts of Basella alba on selected microorganisms. International Research Journal of Pharmacy, 3:71-73.
Ranganathan, S., Suvarchala, V., Rajesh, Y. B. R. D., Prasad, M. S., Padmakumari, A. P. and Voleti, S. R. (2006). Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biologia Plantarum, 50:713-716.
Saha, R., Saieed, M. A. U. and Chowdhury, M. A. K. (2013). Growth and yield of rice (Oryza sativa) as influenced byhumic acid and poultry manure. Univer. Journal of Plant Science, 1:78-84.
Shereen, A., Mumtaz, S., Raza, S., Khan, M. A. and Solangi, S. (2005). Salinity effects on seedling growth and yield components of different inbred rice lines. Pakistan Journal of Botany, 37:131-139.
Suwardi and Wijaya, H. (2013). Peningkatan produksi tanaman pangan dengan bahan aktif asam humat dengan zeolit sebagai pembawa. Jurnal Ilmu Pertanian Indonesia, 18:79-84.
Tikhonov, V. V., Yakushev, A. V., Zavgorodnyaya, Y. A., Byzov, B. A. and Demin, V. V. (2010). Effect of humic acid on the growth of bacteria. Soil Biology, 43:305-313.
Triyono, A., Purwanto and Budiyono (2013). Efisiensi penggunaan pupuk – N untuk pengurangan kehilangan nitrat pada lahan pertanian. Prosiding Seminar Nasional Pengelolaan Sumber Daya Alam Dan Lingkungan, 1:526-531.
Walker, T., Bais, H., Grotewold, E. and Vivanco, J. (2003). Root Exudation and Rhizosphere Biology. Plant Physiology, 132:44-52.
Winarso, S., Sulistyanto, D. and Handayanto, E. (2011). Effects of humic compounds and phosphate-solubilizing bacteria on phosphorus availability in an acid soil. Journal of Ecology and Natural Environment, 3:232-240.
Xing, Y. Z. and Zhang, Q. F. (2010). Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 61:1-22.
Xu, S., Zhu, S., Jiang, Y., Wang, N., Wang, R., Shen, W. and Yang, J. (2013). Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil, 370:47-57.
Yunus, F., Lambui, O. and Suwastika, I. N. (2017). Kelimpahan mikroorganisme tanah pada sistem perkebunan kakao (Theobroma cacao L.) semi intensif dan non intensif. Natural Science: Journal of Science and Technology, 6:194-205.
Zu, C., Wu, H. S., Tan, L. H., Yu, H., Yang, J. F. and Li, Z. G. (2012). Analysis of correlation between soil pH and nutrient concentrations across Hainan Black Pepper Advantage Region. Chinese Journal of Tropical Crops, 33:1174-1179.