Reliability of seedling stage selection for aluminium stress tolerance in hot pepper (Capsicum annuum L)

Main Article Content

Herison, C.
Rustikawati.
Hasanudin.
Suharjo, U. K. J.
Masabni, J. G.

Abstract

In Ultisol, the presence of aluminium (Al) in high concentration is the main constraint hampering growth and yield of many crops, including hot pepper. The use of varieties tolerant to Al stress is one most prospective manner, which is relatively low cost and environmentally friendly, in exploiting this acidic soil to increase the national hot pepper production. Appropriate screening method is required to make variety development more efficient. a concentration of 2 mM Al in nutrient solution gave enough selecting pressure to determine genotypes which tolerant to Al stress.  Seedling stage selection was highly reliable to determine most tolerant genotypes against Al stress in hot pepper, with the key trait of plant fresh weight, plant dry weight, and stem diameter.  The most tolerant genotype amongst 27 tested genotypes were ‘HP’, ‘PBC621’, ‘PBC266’, ‘PBC 157’, ‘Mario’, ‘PBC155’, ‘PBC396’, ‘Sempurna’ and the most sensitive ones were ‘LPK’ and ‘Romario’. The result of field experiment confirmed the greenhouse finding. However, It is needed to be further evaluated more acidic ultisol to obtain more accurate aluminum tolerance property of selected genotypes

Article Details

How to Cite
Herison, C., Rustikawati., Hasanudin., Suharjo, U. K. J., & Masabni, J. G. (2022). Reliability of seedling stage selection for aluminium stress tolerance in hot pepper (Capsicum annuum L). International Journal of Agricultural Technology, 18(2), 549–566. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6922
Section
Original Study

References

Akhter, A., Wagatsuma, T., Khan, M. S. H. and Tawaraya, K., et al. (2009). Comparative studies on aluminum tolerance screening techniques for sorghum, soybean and maize in simple solution culture. American Journal of Plant Physiology, 4:1-8.

Alvarez, I., Sam, O., Reynaldo, I., Testillano, P., del Carmen Risueño, M. and Arias, M. (2012a). Morphological and cellular changes in rice roots (Oryza sativa L.) caused by Al stress. Bot Stud, 53.

Awasthi, J. P., Saha, B., Regon, P., Sahoo, S., Chowra, U., Pradhan, A., Roy, A. and Panda, S. K. (2017). Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PloS One, 12:e0176357.

Bahari, N., Bighdilu, B. B. and Karpisheh, L. (2013). Evaluation of drought tolerance of bread wheat genotypes by stress and sensitivity tolerance indices. Annals of Biological Research, 4:43-47.

Bidhan, R. O. Y. and Bhadra, S. (2014). Effects of toxic levels of aluminium on seedling parameters of rice under hydroponic culture. Rice Science, 21:217-223.

Brhane, H., Fikru, E., Haileselassie, T. and Tesfaye, K. (2018). Hydroponic screening and characterization of aluminium tolerance on finger millet (Eleusine coracana (L.) Gaertn) accessions. Journal of Agricultural Biotechnology and Sustainable Development, 10:34-44.

Choudhary, A. K., Singh, D. and Kumar, J. (2011). A comparative study of screening methods for tolerance to aluminum toxicity in pigeonpea [Cajanus cajan (L.) Millspaugh]. Australian Journal of Crop Science, 5:1419-1426.

Choudhary, V. K. and Kumar, P. S. (2015). Amelioration of Acidic Soil and Production Performance of Cowpea by the Application of Different Organic Manures in Eastern Himalayan Region, India. Communications in Soil Science and Plant Analysis, 46:2523–2533. doi:10.1080/00103624.2015.1081928.

Domingues, A. M., Silva, E. da., Freitas, G., Ganança, J. F., Nóbrega, H., Slaski, J. J. and Carvalho, M. Â. P. de. (2013). Aluminium tolerance in bean traditional cultivars from Madeira. Revista de la Facultad de Ciencias Agrarias, 36:148-156.

Drapanauskaite, D., Buneviciene, K., Repsiene, R., Mazeika, R., Navea, J. and Baltrusaitis, J. (2021). Physicochemical characterization of pelletized lime kiln dust as potential liming material for acidic soils. Waste Biomass Valorization, 12:1267-1280.

Fritsche-Neto, R. and Borém, A. (eds). (2012). Plant Breeding for Abiotic Stress Tolerance. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/978-3-642-30553-5.

Fritsche-Neto, R. and DoVale, J. C. (2012). Breeding for Stress-Tolerance or Resource-Use Efficiency? In: R. Fritsche-Neto and A. Borém (Ed). Plant Breeding for Abiotic Stress Tolerance, Springer, Now York.

Giannakoula, A., Moustakas, M., Mylona, P., Papadakis, I. and Yupsanis, T. (2008). Aluminum tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation. Journal of Plant Physiology, 165:385-396. doi:10.1016/j.jplph.2007.01.014

He, H., Li, Y. and He, L. F. (2019). Aluminum toxicity and tolerance in Solanaceae plants. South African Journal of Botany, 123:23-29.

Herison, C., Rustikawati, R., Meita, R. and Hasanudin. (2020). Analisis cluster dan seleksi primer SSR (simple sequence repeats) untuk sifat toleran aluminium pada cabai. J Hortik Indones, 11:61-71.

Herison, C., Sutjahjo, S. H., Sulastrini, I., Rustikawati, R. and Marwiyah, S. (2018). Genetic Diversity Analysis in 27 Tomato Accessions Using Morphological and Molecular Markers. AGRIVITA Journal of Agricultural Science, 40:36-44.

Ifansyah, H. (2014). Soil pH and Solubility of Aluminum, Iron, and Phosphorus in Ultisols: the Roles of Humic Acid. Jurnal Tanah Tropika (Journal of Tropical Soils), 18.

Khu, D.-M., Reyno, R., Brummer, E. C. and Monteros, M. J. (2012). Screening Methods for Aluminum Tolerance in Alfalfa. Crop Science, 52:161-167. doi:10.2135/cropsci2011.05.0256

Kochian, L. V., Hoekenga, O. A. and Piñeros, M. A. (2004). How Do Crop Plants Tolerate Acid Soils? Mechanisms of Aluminum Tolerance and Phosphorous Efficiency. Annual Review of Plant Biology, 55:459-493. doi:10.1146/annurev.arplant.55.031903.141655

Kochian, L. V., Piñeros, M. A., Liu, J. and Magalhaes, J. V. (2015). Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annual Review of Plant Biology, 66:571-598.

Konarska, A. (2010). Effects of aluminum on growth and structure of red pepper (Capsicum annuum L.) leaves. Acta Physiologiae Plantarum, 32:145. doi:10.1007/s11738-009-0390-4

Kuntz, L. B. (2013). Wick irrigation systems for subsistence farming. Thesis. Massachusetts Institute of Technology

Kushwaha, J. K., Pandey, A. K., Dubey, R. K., Singh, V., Mailappa, A. S. and Singh, S. (2017). Screening of cowpea [Vigna unguiculata (L.) Walp.] for aluminium tolerance in relation to growth, yield and related traits. Legume Research An International Journal, 40:434-438.

Lestari, T., Trikusumaningtyas., Ardie, S. W. and Sopandie, D. (2017). The Role of Phosphorus in Improving Sorghum Tolerance to Aluminum Stress. Journal Agronomi Indonesia, 45:43-48.

Ma, J. F. (2007). Syndrome of Aluminum Toxicity and Diversity of Aluminum Resistance in Higher Plants. In: International Review of Cytology, Academic Press, pp.225-252. doi:10.1016/S0074-7696(07)64005-4

Miti, F., Tongoona, P. and Derera, J. (2010). S1 selection of local maize landraces for low soil nitrogen tolerance in Zambia. African Journal ofPlant Science, 4:067-081.

Osawa, H., Ikeda, S. and Tange, T. (2013). The rapid accumulation of aluminum is ubiquitous in both the evergreen and deciduous leaves of Theaceae and Ternstroemiaceae plants over a wide pH range in acidic soils. Plant Soil, 363:49-59. doi:10.1007/s11104-012-1285-5

Panda, S. K. and Matsumoto, H. (2007). Molecular Physiology of Aluminum Toxicity and Tolerance in Plants. Botanical Review, 73:326-347.

doi:10.1663/0006-8101(2007)73[326:MPOATA]2.0.CO;2

Pattanayak, A. and Pfukrei, K. (2013). Aluminium toxicity tolerance in crop plants: Present status of research. African Journal of Biotechnology, 12.

Prasetyo, B. H. and Suriadikarta, D. A. (2006). Karakteristik, potensi, dan teknologi pengelolaan tanah Ultisol untuk pengembangan pertanian lahan kering di Indonesia. J Litbang Pertan, 25:39-46.

Richard, C., Munyinda, K., Kinkese, T. and Osiru, D. S. (2015a). Genotypic variation in seedling tolerance to aluminum toxicity in historical maize inbred lines of Zambia. Agronomy, 5:200-219.

Rustikawati, Romeida, A., Suprijono, E. and Herison, C. (2020). Growth Performance and AMMI Yield Stability Analysis of Five New Maize Hybrid Populations. International Journal of Advanced Engineering and Technology, 10:344. doi:10.18517/ijaseit.10.1.3862

Schmitt, M., Watanabe, T. and Jansen, S. (2016). The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species. AoB PLANTS, 8. doi:10.1093/aobpla/plw065.

Shen, R. andMa, J. F. (2001). Distribution and mobility of aluminium in an Al‐accumulating plant, Fagopyrum esculentum Moench. Journal of Experimental Botany, 52:1683-1687. doi:10.1093/jexbot/52.361.1683

Silva, S., Pinto-Carnide, O., Martins-Lopes, P., Mato,s M., Guedes-Pinto, H. and Santos, C. (2010). Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environmental and Experimental Botany, 68:91-98. doi:10.1016/j.envexpbot.2009.10.005

Silva, S., Santos, C., Matos, M. and Pinto-Carnide, O. (2012). Al toxicity mechanism in tolerant and sensitive rye genotypes. Environmental and Experimental Botany, 75:89-97. doi:10.1016/j.envexpbot.2011.08.017

Steel, R. G. D. and Torrie J. H. (1982). Principles and Procedures of Statistics. A Biometrical Approach., 2nd Edition. Edition. McGraw-Hill Intl. Book Co., Singapore, 633 pp.

Wang, H., Chen, R. F., Iwashita, T., Shen, R. F. and Ma J. F. (2015a). Physiological characterization of aluminum tolerance and accumulation in tartary and wild buckwheat. New Phytologist, 205:273-279. doi:10.1111/nph.13011

Xu, L., WuLiu, B. C., Wang, N., Ding, J., Liu, C., Gao, S. and Zhang, S. (2017a). Aluminium Tolerance Assessment of 141 Maize Germplasms in a Solution Culture

Zhang, J., He, Z., Tian, H., Zhu, G. and Peng, X. (2007). Identification of aluminium-responsive genes in rice cultivars with different aluminium sensitivities. Journal of Experimental Botany, 58:2269-2278. doi:10.1093/jxb/erm110

Zheng, L., Lan, P., Shen, R. F. and Li, W. F. (2014). Proteomics of aluminum tolerance in plants. PROTEOMICS, 14:566-578. doi:10.1002/pmic.201300252

Zhou, G., Pereira, J. F., Delhaize, E., Zhou, M., Magalhaes, J. V. and Ryan, P. R. (2014). Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. Journal of Experimental Botany, 65:2381-2390. doi:10.1093/jxb/eru121