Non-destructive leaf area estimation in habanero chili (Capsicum chinense Jacq.)
Main Article Content
Abstract
The best fit models were polynomial (RL2=0.9731; Rw2=0.9620) and power (RL2=0.9692; Rw2=0.9592) regressions if single predictor of leaf length (L) or width (W) was used. Meanwhile, if LW was used, the best fit models were the zero-intercept linear (RLw2=0.9929) and power (RLw2=0.9962) regressions. Forcing the intercept to zero yielded better estimation for smaller leaves and did not significantly alter the coefficient of determination. Configuration of scattered data helped to recognize the curving trend and should be used as reference in selecting an appropriate regression type. The second-order polynomial regression curve has a single bend, therefore, far-end of the curve would either rise to infinity or curve down after a rising start. These both cases are an inherited weakness of the second-order polynomial regression beyond range of collected data. Both problems associated with the decrease of leaf area (LA) at higher predictor values and under-estimating of LA at lower predictor value were successfully eliminated by opting to use the power regression if L2W or LW2 as predictors. Accuracy and reliability of separated L (R2=0.9843) or W (R2=0.9899) was lower than combined LW (R2=0.9960) as predictor in case of habanero chili. Significant differences in specific leaf fresh weight (SLFW) and leaf water content (LWC) between young leaves and mature leaves should be recognized as a source of discrepancy before considering using weight-related traits in developing LA estimation model. Use of 120 to 160 regularly-shape leaves were sufficient for creating an accurate LA estimation if the selected leaves were evenly distributed and covering wide range of leaf size in habanero chili.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Basak, J. K., Qasim, W., Okyere, F. G., Khan, F., Lee, Y. J., Park, J. and Kim, H. T. (2019). Regression analysis to estimate morphology traits of pepper plant in a controlled greenhouse system. Journal of Biosystems Engineering, 44:57-68.
Buttaro, D., Rouphael, Y., Rivera, C. M., Colla, G. and Gonnella, M. (2015). Simple and accurate allometric model for leaf area estimation in Vitis vinifera L. genotypes. Photosynthetica, 53:342-348.
Cargnelutti-Filho, A., Toebe, M., Burin, C., Alves, B. M. and Neu, I. M. M. (2015). Number of leaves needed to model leaf area in jack bean plants using leaf dimensions. Bioscience Journal, 31:1651-1662.
Carvalho, J. O., Toebe, M., Tartaglia, F. L., Bandeira, C. T. and Tambara, A. L. (2017). Leaf area estimation from linear measurements in different ages of Crotalaria juncea plants. Anais da Academia Brasileira de Ciências, 89:1851-1868.
Cirillo, C., Pannico, A., Basile, B., Rivera, C. M., Giaccone, M., Colla, G., Pascale, S. D. and Rouphael, Y. (2017). A simple and accurate allometric model to predict single leaf area of twenty-one European apricot cultivars. European Journal of Horticultural Science, 82:65-71.
Eftekhari, M., Kamkar, B. and Alizadeh, M. (2011). Prediction of leaf area in some Iranian table grape (Vitis vinifera L.) cuttings by a non-destructive and simple method. Science Research Reporter, 1:115-121.
Ghadami-Firouzabadi, A., Raeini-Sarjaz, M., Shahnazari, A. and Zareabyaneh, H. (2015). Non-destructive estimation of sunflower leaf area and leaf area index under different water regime managements. Archives of Agronomy and Soil Science, 61:1357-1367.
Ghoreishi, M., Hossini, Y. and Maftoon, M. (2012). Simple models for predicting leaf area of mango (Mangifera indica L.). Journal of Biology and Earth Sciences, 2:B45-B53.
Giaccone, M., Pannico, A., Scognamiglio, P., Rivera, C. M., Cirillo, C., Rouphael, Y., Pascale, S. and Basile, B. (2017). Regression model for leaf area estimation in Ficus carica L. Acta Horticulturae, 1173:163-168.
González-Pérez, J. S., Bragantia-Román, A. E., Quevedo-Nolasco, A., Velasco-Cruz, C. and Jaén-Contreras, D. (2018). Specific leaf weight and leaf nitrogen concentration during the phenology of Japanese Plum cv. Methley. Agroproductividad, 11:43-50.
Guan, Z., Abd-Elrahman, A., Fan, Z., Whitaker, V. M. and Wilkinson, B. (2020). Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images. ISPRS J Photogram Remote Sensing, 163:171-186.
Hinnah, F. D., Heldwein, A. B., Maldaner, I. C., Loose, L. H., Lucas, D. D. P. and Bortoluzzi, M. P. (2014). Estimation of eggplant leaf area from leaf dimensions. Bragantia, 73:213-218.
Jumrani, K., Bhatia, V. S. and Pandey, G. P. (2017). Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis, and chlorophyll fluorescence in soybean. Photosynthesis Research, 131:333-350.
Keramatlou, I., Sharifani, M., Sabouri, H., Alizadeh, M. and Kamkar, B. (2015). A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Scientia Horticulturae, 184:36-39.
Khan, F. A., Banday, F. A., Narayan, S., Khan, F. U. and Bhat, S. A. (2016). Use of Models as Non-destructive Method for Leaf Area Estimation in Horticultural Crops. IRA-International Journal of Applied Sciences, 4:162-180.
Koubouris, G., Bouranis, D., Vogiatzis, E., Nejad, A.R, Giday, H., Tsaniklidis, G., Ligoxigakis, E. K. and Blazakis, K. (2018). Leaf area estimation by considering leaf dimensions in olive tree. Scientia Horticulturae, 240:440-445.
Lakitan, B., Iwanaga, H., Kartika, K., Kriswantoro, H. and Sakagami, J. I. (2018). Adaptability to varying water levels and responsiveness to NPK fertilizer in yellow velvetleaf plant (Limnocharis flava). Australian Journal of Crop Science, 12:1757-1764.
Lakitan, B., Kartika, K., Susilawati, S. and Wijaya, A. (2021). Acclimating leaf celery plant (Apium graveolens) via bottom wet culture for increasing its adaptability to tropical riparian wetland ecosystem. Biodiversitas, 22:320-328.
Lakitan, B., Widuri, L. I. and Meihana, M. (2017). Simplifying procedure for a non-destructive, inexpensive, yet accurate trifoliate leaf area estimation in snap bean (Phaseolus vulgaris). The Journal of Applied Horticulture, 19:15-21.
Mack, L., Capezzone, F., Munz, S., Piepho, H. P., Claupein, W., Phillips, T. and Graeff-Hönninger, S. (2017). Non-destructive leaf area estimation for chia. Agronomy Journal, 109:1960-1969.
Mazzini, R. B., Ribeiro, R. V. and Pio, R. M. (2010). A simple and non-destructive model for individual leaf area estimation in citrus. Fruits, 65:269-275.
Meihana, M., Lakitan, B., Harun, M. U., Widuri, L. I., Kartika, K., Siaga, E. and Kriswantoro, H. (2017) Steady shallow water table did not decrease leaf expansion rate, specific leaf weight, and specific leaf water content in tomato plants. Australian Journal of Crop Science, 11:1635-1641.
Oliveira, V. S., Santos, K. T. H., Ambrósio, T. J., Santos, J. S. H., Santana, W. R., Malikouski, R. G., Nascimento, A. L. and Santos, G. P. (2019). Mathematical Modeling for Leaf Area Estimation from Papaya Seedlings ‘Golden THB’. Journal of Agricultural Science, 11:496-505.
Padrón, R. A. R., Lopes, S. J., Swarowsky, A., Cerquera, R. R., Nogueira, C. U. and Maffei, M. (2016). Non-destructive models to estimate leaf area on bell pepper crop. Ciência Rural, 46:1938-1944.
Peksen, E. (2007) Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Scientia Horticulturae, 113:322-328.
Pezzini, R. V., Cargnelutti-Filho, A., Alves, B. M., Follmann, D. N., Kleinpaul, J. A., Wartha, C. A. and Silveira, D. L. (2018). Models for leaf area estimation in dwarf pigeon pea by leaf dimensions. Bragantia, 77:221-229.
Pompelli, M. F., Antunes, W. C., Ferreira, D. T. R. G., Cavalcante, P. G. S., Wanderley-Filho, H. C. L. and Endres, L. (2012) Allometric models for non-destructive leaf area estimation of Jatropha curcas. Biomass and Bioenergy, 36:77-85.
Rouphael, Y., Colla, G., Fanasca, S. and Karam, F. (2007). Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica, 45:306-308.
Sabouri, H., Sajadi, S. J., Jafarzadeh, M. R., Rezaei, M., Ghaffari, S. and Bakhtiari, S. (2021). Image processing and prediction of leaf area in cereals: A comparison of artificial neural networks, an adaptive neuro‐fuzzy inference system, and regression methods. Crop Science, 61:1013-1029.
Salazar, J. C. S., Melgarejo, L. M., Bautista, E. H. D., Di Rienzo, J. A. and Casanoves, F. (2018). Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Scientia Horticulturae, 229:19-24.
Sankar, V., Sakthivel, T., Karunakaran, G. and Tripathi, P. C. (2017). Non-destructive estimation of leaf area of durian (Durio zibethinus)–An artificial neural network approach. Scientia Horticulturae, 219:319-325.
Shi, P., Liu, M., Ratkowsky, D. A., Gielis, J., Su, J., Yu, X., Wang, P. and Zhang, L. (2019) Leaf area–length allometry and its implications in leaf shape evolution. Trees, 33:1073-1085.
Teobaldelli, M., Rouphael, Y., Fascella, G., Cristofori, V., Rivera, C. M. and Basile, B. (2019). Developing an accurate and fast non-destructive single leaf area model for loquat (Eriobotrya japonica Lindl) cultivars. Plants, 8:e230. doi: 10.3390/plants8070230.
Toebe, M., Souza, R. R. D., Mello, A. C., Melo, P. J. D., Segatto, A. and Castanha, A. C. (2019). Leaf area estimation of squash ‘Brasileirinha’by leaf dimensions. Ciência Rural, 49. doi: 10.1590/0103-8478cr20180932.
Tsialtas, J. T., Koundouras, S. and Zioziou, E. (2008). Leaf area estimation by simple measurements and evaluation of leaf area prediction models in Cabernet-Sauvignon grapevine leaves. Photosynthetica, 46:452-456.
Tu, L. F., Peng, Q., Li, C. S. and Zhang, A. (2021). 2D In Situ Method for Measuring Plant Leaf Area with Camera Correction and Background Color Calibration. Scientific Programming, Retried from doi: 10.1155/2021/6650099.
Widuri, L. I., Lakitan, B., Hasmeda, M., Sodikin, E., Wijaya, A., Meihana, M., Kartika, K. and Siaga, E. (2017). Relative leaf expansion rate and other leaf-related indicators for detection of drought stress in chili pepper (Capsicum annuum L.) Australian Journal of Crop Science, 11:1617-1625.
Zhang, C., Zhang, J., Zhang, H., Zhao, J., Wu, Q., Zhao, Z. and Cai, T. (2015). Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (Zea mays L.) under water stress. Plant Growth Regulation, 77:233-243.