Development of Loop-mediated Isothermal Amplification (LAMP) for rapid detection of Methicillin-resistance Staphylococcus aureus (MRSA) from dairy cattle
Main Article Content
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of mastitis in dairy cattle, resulting in the loss of economic value in livestock. The gene mecA encodes penicillin-binding protein 2A (PB2A), which only binds weakly to β-lactam antibiotics such as penicillin and methicillin, thus conferring the antibiotic resistant property in MRSA. Currently, detection of MRSA in laboratory setting is commonly performed using bacterial culture or PCR assay targeting mecA gene, which is time-consuming, labor-intensive, and requires specialized personnel and equipment. Therefore, a more rapid detection of MRSA is needed to effectively prevent the spread of MRSA. In this study, a novel Loop-mediated Isothermal Amplification (LAMP) assay that can detect MRSA more conveniently, quickly, and accurately was developed. Bacterial culture were isolated from milk samples from dairy cattle with mastitis and PCR primers were designed to target femA, blaZ, and mecA gene to detect Staphylococcus aureus (S. aureus), penicillin-resistant S. aureus, and methicillin-resistance S. aureus, respectively. We found that all isolates possessed femA and blaZ genes, and 30% of the isolates possessed mecA gene. For LAMP assay development, primers were designed to target the coding region of mecA gene, and LAMP reactions were monitored in real-time using the fluorescence labelling of the amplified products. We were able to detect the presence of MRSA quickly, and the results were consistent with those obtained by PCR and by bacterial culture. These results indicated that the LAMP assay successfully detected mecA gene in MRSA strains isolated from dairy cattle milk, and this assay could be further developed into a test kit to be used in the field
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ashraf, A. and Imran, M. (2018). Diagnosis of bovine mastitis: from laboratory to farm. Tropical Animal Health and Production, 50:1193-1202.
Badua, A. T., Boonyayatra, S., Awaiwanont, N., Gaban, P. B. V. and Mingala, C. N. (2020). Methicillin-resistant Staphylococcus aureus (MRSA) associated with mastitis among water buffaloes in the Philippines. Heliyon, 6:e05663.
Balemi, A., Gumi, B., Amenu, K., Girma, S., Gebru, M., Tekle, M., Rius, A. A., D’souza, D. H., Agga, G. E. and Dego, O. K. (2021). Prevalence of mastitis and antibiotic resistance of bacterial isolates from cmt positive milk samples obtained from dairy cows, camels, and goats in two pastoral districts in southern ethiopia. Animals, 11.
Botaro, B. G., Cortinhas, C. S., Dibbern, A. G., e. Silva, L. F. P., Benites, N. R. and dos Santos, M. V. (2015). Staphylococcus aureus intramammary infection affects milk yield and SCC of dairy cows. Tropical Animal Health and Production, 47:61-66.
Brakstad, O. D. D. G., Aasbakk, K. and Maeland, J. A. (1992). Detection of Staphylococcus aureus nuc pcr und primer. Journal of Clinical Microbiology, 30:1654-1660.
Corrigan, R. M., Miajlovic, H. and Foster, T. J. (2009). Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiology, 9:1-10.
Cuny, C., Wieler, L. H. and Witte, W. (2015). Livestock-Associated MRSA: The impact on humans. Antibiotics, 4:521-543.
Das, D. and Bishayi, B. (2010). Contribution of Catalase and Superoxide Dismutase to the Intracellular Survival of Clinical Isolates of Staphylococcus aureus in Murine Macrophages. Indian Journal of Microbiology, 50:375-384.
Davoodi, N. R., Siadat, S. D., Vaziri, F., Yousefi, J. V., Harzandi, N., Rafi, A., Rajaei, B., Zanganeh, M., Nejad, A. J., Peerayeh, S. N. and Bahrmand, A. R. (2015). Identification of staphylococcus aureus and coagulase-negative Staphylococcus (CoNs) as well as detection of methicillin resistance and Panton-Valentine Leucocidin by multiplex PCR. Journal of Pure and Applied Microbiology, 9:467-471.
Deb, R., Kumar, A., Chakraborty, S., Verma, A. K., Tiwari, R., Dhama, K., Singh, U. and Kumar, S. (2013). Trends in diagnosis and control of bovine mastitis: A review. Pakistan Journal of Biological Sciences, 16:1653-1661.
Enne, V. I., Delsol, A. A., Roe, J. M. and Bennett, P. M. (2006). Evidence of antibiotic resistance gene silencing in Escherichia coli. Antimicrobial Agents and Chemotherapy, 50:3003-3010.
Genigeorgis, C. A. (1989). Present state of knowledge on staphylococcal intoxication. International Journal of Food Microbiology, 9:327-360.
Gillaspy, A. F., Patti, J. M., Pratt, F. L., Iandolo, J. J. and Smeltzer, M. S. (1997). The Staphylococcus aureus collagen adhesin-encoding gene (cna) is within a discrete genetic element. Gene, 196:239-248.
Gomes, F. and Henriques, M. (2016). Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Current Microbiology, 72:377-382.
Harris, L. G., Foster, S. J., Richards, R. G., Lambert, P., Stickler, D. and Eley, A. (2002). An introduction to Staphylococcus aureus, and techniques for identifyingand quantifying S. aureus adhesins in relation to adhesion to biomaterials:Review. European Cells & Materials Journal, 4:39-60.
Hogeveen, H. (2005). Mastitis is an economic problem. Proceedings of the British Mastitis Conference, 1-73.
Hogeveen, H., Huijps, K. and Lam, T. J. G. M. (2011). Economic aspects of mastitis: New developments. New Zealand Veterinary Journal, 59:16-23.
Itou, T., Katayama, Y. and Hiramatsu, K. (2000). A new mobile genetic element, staphylococcal cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Japanese Journal of Bacteriology, 55:483-498.
Johannessen, M., Sollid, J. E. and Hanssen, A. M. (2012). Host- and microbe determinants that may influence the success of S. aureus colonization. Frontiers in Cellular and Infection Microbiology, 2:56.
John, J. F. and Harvin, A. M. (2007). History and evolution of antibiotic resistance in coagulase-negative staphylococci: Susceptibility profiles of new anti-staphylococcal agents. Ther. Clin. Risk Manag, 3:1143-1152.
Lee, J. H. (2003). Methicillin (Oxacillin)-Resistant Staphylococcus aureus Strains Isolated from Major Food Animals and their Potential Transmission to Humans. Applied and Environmental Microbiology, 69:6489-6494.
Li, Y., Fan, P., Zhou, S. and Zhang, L. (2017). Microbial Pathogenesis Loop-mediated isothermal amplification ( LAMP ): A novel rapid detection platform for pathogens. Microbial Pathogenesis, 107:54-61.
Licitra, G. (2013). Etymologia: Staphylococcus. Emerging Infectious Diseases, 19:1553.
Lowy, F. D. (2000). Is Staphylococcus aureus an intracellular pathogen?. Trends in Microbiology, 341-343.
Maidhof, H., Reinicke, B., Blumel, P., Berger-Bachi, B. and Labischinski, H. (1991). femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. Journal of Bacteriology, 173:3507-3513.
Mehrotra, M., Wang, G. and Johnson, W. M. (2000). Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. Journal of Clinical Microbiology, 38:1032-1035.
Notomi, T., Okayama. H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acid Research, 28:63-70.
Pinzón-Sánchez, C. and Ruegg, P. L. (2011). Risk factors associated with short-term post-treatment outcomes of clinical mastitis. Journal of Dairy Science, 94:3397–3410.
Rayner, C. and Munckhof, W. J. (2005). Staphaur-current-antibiotitreat. Journal of Internal Medicine, 35:1-16.
Reiner, K. (2013). Catalase Test Protocol 1-9. Retrieved from http://www.microbelibrary.org/library/laboratory-test/3226-catalase-test-protocol
Rowland, S. J. and Dyke, K. G. H. (1989). Characterization of the staphylococcal β-lactamase transposon Tn552. The EMBO Journal, 8:2761-2773.
Ruegg, P. L. (2017). A 100-Year Review: Mastitis detection, management, and prevention. Journal of Dairy Science, 100:10381-10397.
Sahoo, P. R., Sethy, K., Mohapatra, S. and Panda, D. (2016). Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases. Veterinary World, 9:465-469.
Sandra, B. (2013). Clinical and subclinical mastitis in dairy cattle in Kampala, Uganda. Sveriges lantbruksuniversitet, 1652-8697.
SenGupta, M. and M. Sengupta. (2016). Coagulase test. Practical Microbiology, 71-71.
Shinji, H., Yosizawa, Y., Tajima, A., Iwase, T., Sugimoto, S. , Seki, K. and Mizunoe, Y. (2011). Role of fibronectin-binding proteins A and B in in vitro cellular infections and in vivo septic infections by Staphylococcus aureus. Infection and Immunity, 79:2215-2223.
Shrestha, A., Bhattarai, R. K., Luitel, H., Karki, S. and Basnet, H. B. (2021). Prevalence of methicillin-resistant Staphylococcus aureus and pattern of antimicrobial resistance in mastitis milk of cattle in Chitwan, Nepal. BMC Veterinary Research, 17:1-7.
Smith, A. C. and Hussey, M. A. (2005). Gram stain protocols. American Society for Microbiology, 1:14.
Taj, Y., Abdullah, F. E. and Kazmi, S. U. (2010). Current pattern of antibiotic resistance in Staphylococcus aureus clinical isolates and the emergence of vancomycin resistance. Journal of College of Physicians and Surgeons Pakistan, 20:728-732.
Takayama, Y., Tanaka, T., Oikawa, K., Fukano, N., Goto, M. and Takahashi, T. (2018). Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in staphylococcus aureus isolates from Japan. Annals of Laboratory Medicine, 38:155-159.
Tam, K. and Torres, V. J. (2016). Staphylococcus aureus Secreted Toxins & Extracellular Enzymes Kayan. Physiology & Behavior, 176:139-148.
Toltzis, P. (2018). Staphylococcus epidermidis and Other Coagulase-Negative Staphylococci. Fifth Edit. Elsevier Inc. pp.706-712.
Wang, W., Lin, X., Jiang, T., Peng, Z., Xu, J., Yi, L., Li, F., Fanning, S. and Baloch, Z. (2018). Prevalence and characterization of Staphylococcus aureus cultured from raw milk taken from dairy cows with mastitis in Beijing, China. Frontiers in Microbiology, 9.
Wilailuckana, C. (2005). Molecular characteristic Methicillin-resistant Staphylococcus aureus. Thesis of Medical Microbiology Facultry. Mahidol University.
Wong, Y. P., Othman, S., Lau, Y. L., Radu, S. and Chee, H. Y. (2018). Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. Journal of Applied Microbiology, 1364-5072.
Zadoks, R. N., Middleton, J. R., McDougall, S., Katholm, J. and Schukken, Y. H. (2011). Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. Journal of Mammary Gland Biology and Neoplasia, 16:357-372.