Dietary of probiotics and organic acids supplementation on productive performances, intestinal morphology, carcass characteristics, and meat quality of broiler chickens

Main Article Content

Nopparatmaitree, M.
Plaimast, H.
Soisuwan, K.

Abstract

In theantibiotic-free and food safety era, broiler diet formulations emphasize theuse of innocuous feed additives such as probiotics, prebiotics, synbiotics, and andorganic acids. Furthermore, it is used to replace antibiotics in broilers productionin order to maintain the ecological balance of the gut, enhance intestinal morphology, increase productivity, and improve feed efficiency. Results showed that supplementation ofprobiotics and a combination of probiotics and organic acids in the level of 2kg/ton feed had significantly higher (P<0.05) villi height when comparedwith other treatments. It was also discovered that probiotics and organic acidssupplementation improved (P<0.05) feed conversion ratio of broilers in the starter period (1-21 days) in comparison to the other groups. However, therewas no effect of any of the dietary treatments on growth performance during thegrower period (22-42 days) or the finisher period (43-56 days). Likewise, probiotics, organic acids, and combinations of probiotics and organic acids had no effecton broiler carcass traits or meat quality characteristics. However, probioticsand organic acids had no effect on carcass traits in terms of increasing theproportion of breasts and lowering the percentage of abdominal fat pads (P>0.05).This experiment concluded that a 2 kg/ton feed supplementation of probiotics combined with organic acids improved growth performance in terms of feedconversion ratio and villi height of female broilers during the starter period

Article Details

How to Cite
Nopparatmaitree, M., Plaimast, H., & Soisuwan, K. (2022). Dietary of probiotics and organic acids supplementation on productive performances, intestinal morphology, carcass characteristics, and meat quality of broiler chickens. International Journal of Agricultural Technology, 18(2), 695–708. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6938
Section
Original Study

References

Akyurek. H., Ozduven, M. L., Okur, A. A., Koc, F. and Samli, H. E. (2011). The effect of supplementing an organic acid blend and/or microbial phytase to a corn-soybean based diet fed to broiler chickens. African Journal of Agricultural Research, 6:642-649.

Al-Khalaifa, H., Al-Nasser, A., Al-Surayee, T., Al-Kandari, S., Al-Enzi, N., Al-Sharrah, T., Ragheb, G., Al-Qalaf, S. and Mohammed, A. (2019). Effect of dietary probiotics and prebiotics on the performance of broiler chickens. Poultry Science, 98:4465-4479.

Ao, T., Cantor, A. H., Pescatore, A. J., Ford, M. J., Pierce, J. L. and Dawson, K. A. (2009). Effect of enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poultry Science, 88:111-117.

Awad, W., Ghareeb, K. and Bohm, J. (2008). Intestinal structure and function of broiler chickens on diet supplemented with a symbiotic containing Eenterococcus fuecium oligosaccharide. International Journal of Molecular Sciences, 9:2205-2216.

Barbosa, F. J. A., Almeida, M., Shimokomaki, M., Pinheiro, J. W., Silva, C. A., Michelan, F. T., Bueno F. R. and Oba, A. (2017). Growth performance, carcass characteristics and meat quality of griller-type broilers of four genetic lines. Brazilian Journal of Poultry Science, 19:109-114.

Bitterncourt, L. C., Da Silva, C. C., Garcia, P. D. S. R., Donato, D. C. Z., de Albuquerque, R. and Araújo, L. F. (2016). Influence of a probiotic on broiler performance. Revista Brasileira de Zootecnia, 40:2739-2743.

De Souzaa, L. F. A., Araújob, D. N., Stefania, L. M., Giomettia, I. C., Cruz-Polycarpoc, V. C. Polycarpoc, G. and Burbarellid, M. F. (2018). Probiotics on performance, intestinal morphology and carcass characteristics of broiler chickens raised with lower or higher environmental challenge. Austral Journal of Veterinary Sciences, 50:35-41.

Eeckhaut, V., Van Immerseel, F., Croubels, S., De Baere, S., Haesebrouck, F., Ducatelle, R., Louis, P. and Vandamme, P. (2011). Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum. Microbial Biotechnology, 4:503–12.

Faria, P. B., Bressan, M. C., De Souza, X. R., Rossato, L. V., Botega, L. M. G. and da Gama, L. T. (2010). Carcass and parts yield of broilers reared under a semi-extensive system. Brazilian Journal of Poultry Science, 12:153-159.

Fascina, V. B., Sartori, J. R., Gonzales, E., De Carvalho, F. B., De Souza, I. M. G. P., Polycarpo, G. V., Stradiotti, A. C. and Pelícia. V. C. 2012. Phytogenic additives and organic acids in broiler chicken diets. Revista Brasileira de Zootecnia, 41:2189-2197.

Fritts, C. A., Kersey, J. H., Motl, M. A., Kroger, E. D., Yan. F., Si, J., Jiang, Q., Compos, M. M., Waldroup, A. L. and Waldroup, P. W. (2000). Bacillus Subtilis C-3102 (calsporin) improves live performance and microbiological status of broiler chicken. Journal of Applied Poultry Research, 9:149-155.

Gonzales, A. S., Icochea, D. E., Reyna, S. P., Guzman, G. J., Cazorla, M. F., Lucar, J., Carcelen, C. F. and San Martin, V. (2013). Effect of the supplementation of organic acids on productive parameters in broilers. Revista de Investigaciones Veterinariasdel Peru, 24:32-37.

Hassan, H. M. Z., Mohamed, M. A., Youssef, A. W. and Hassan, E. R. (2010). Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers. Asian-Australasian Journal of Animal Sciences, 23:1348-1353.

Huwaida, E. E M., Rahma, H. H. H., Ali, O. H. A., Elhassan, M. M. O., Bakheit, M. D., Ali, A. M. and Khalid, M. E. (2016). Effect of probiotics and acidifiers on carcass yield, internal organs, cuts and meat to bone ratio of broiler chicken. Journal of Agriculture and Veterinary Science, 9:18-23.

Huyghebaert, G., Ducatelle, R., and Van Immerseel, F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. Veterinary Journal, 187:182-188.

Kim, J. W., Kim, J. H. and Kil, D. Y. (2015). Dietary organic acids for broiler chickens: a review. Ravista Colombiana de Ciencias Pecuarias, 28:109-123.

Kopecký, J., Hrnčár, C., and Weis, J. (2012). Effect of organic acids supplement on performance of broiler chickens. Animal Sciences and Biotechnologies, 45:51-54.

Krysiak, K., Konkol, D. and Korczynski, M. (2021). Overview of the use of probiotics in poultry production. Animals, 11:1620.

Li, P. F., Piao, X., Ru, Y. J., Han, X., Xue, L. F. and Znang, H. Y. (2012). Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian-Australasian Journal of Animal Sciences, 25:1617-1626.

Mani-López, E., García, H. S. and López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45:713-721.

Manyi-Loh, C., Mamphweli, S., Meyer, E. and Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23:795.

Marcu, A., Opriş, I. V., Dumitrescu, G., Ciochină, L. P., Marcu, A., Nicula, M., Peţ, I., Dronca, D., Kelciov, B. and Mariş, C. (2013). The influence of genetics on economic efficiency of broiler chickens growth. Journal of Animal Science and Biotechnology, 46:339-346.

Meimandipour, A., Shuhaimi, M., Hair-Bejo, M., Azhar, K., Kabeir, B. M., Rasti, B. and Yazid, A. (2009). In vitro fermentation of broiler cecal content: The role of lactobacilli and pH value on the composition of microbiota and end products fermentation. Letters in Applied Microbiology, 49:415-420.

Mellor, S. 2000. Alternatives to antibiotics. Feed Mix Special. 6-11.

Midilli, M., Alp, M., Kocabagli, N., Muglali, O. H., Turan, N., Yýlmaz, H. and Çakýr, S. (2008). Effects of dietary probiotic and prebiotic supplementation on growth performance and serum IgG concentration of broilers. South African Journal of Animal Science, 38:21-27.

Murshed, M. A. I. and Abudabos, A. M. (2016). Effects of the dietary inclusion of a probiotic, a prebiotic or their combinations on the growth performance of broiler chickens. Brazilian Journal of Poultry Science, 17:99-103.

National Research Council. (1994). Nutrient requirement of poultry. 9th Edn. National Academy Press, Washington, DC. 176p.

Nguyen, D. H., Lee, K. Y., Mohammadigheisar, M. and Kim, I. H. (2018). Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poultry Science, 97:4351-4358.

Nguyen, D. H., Seok, W. J. and Kim. I. H. (2020). Organic acids mixture as a dietary additive for pigs-a review. Animals, 10:952.

Nopparatmaitree, M., Kitpipit, W., Phuengpathomphorn, C., Mongphuank, S., Kamonlapworaku, E., Banglarp, N. and S. Khianngam. (2013). Effects of synbiotics supplementation on broiler productive performance and economic return. Journal of Agricultural, 31:349-366. (In Thai).

Nourmohammadi, R., Hosseini. S. M., Saraee, H., Arab, A. and Arefinia, H. (2011). Plasma thyroid hormone concentrations and pH values of some GI-tract segments of broilers fed on different dietary citric acid and microbial phytase levels. Journal of Animal Veterinary advances, 10:1450-1454.

Panda, A. K., Rao, S. V. R., Raju, M. and Sunder, G. S. (2009). Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Australasian Journal of Animal Sciences, 22:1026-1031.

Park, Y. H., Hamidon, F., Rajangan, C., Soh, K. P., Gan, C. Y., Lim, T. S., Abdullah, W. N. W. and Liong, M. T. (2016). Application of probiotics for the production of safe and high-quality poultry meat. Food Science of Animal Resources, 36:567-576.

Pathare, P. B., Oparaand, U. L. and Al-Said, F. A. (2013). Colour measurement and analysis in fresh and processed foods. A review. Food and Bioprocess Technology, 6:36-60.

Pourabedin, M. and Zhao, X. (2015). Prebiotics and gut microbiota in chickens. FEMS Microbiology Letters, 362:1-8.

R Core Team (2018). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna. Austria. Retrieved from URLhttp:/www.R-project.org/

Rahimi, J., Mutua, Y., Notenbaert, A. M. O., Dieng, D. and Butterbach-Bahl, K. (2020). Will dairy cattle production in West Africa be challenged by heat stress in the future?. Climatic Change, 161:665-685.

Rahimi, S., Grimes, J. L., Fletcher, O., Ovieedo, E. and Sheldon, B. W. (2009). Effect of a direct fed microbial (Primalac) on structure and ultrastructure of small intestine in turkey. Poultry Science, 88:491-503.

Rathnayake, D., Mun, H. S., Dilawar, M. A., Baek, K. S. and Yang, C. J. (2021). Time for a paradigm shift in animal nutrition metabolic pathway: dietary inclusion of organic acids on the production parameters, nutrient digestibility, and meat quality traits of swine and broilers. Life, 11:476.

Rehman, A., Arif, M., Sajjad, N., Al-Ghadi, M. Q., Alagawany, M., Abd El-Hack, M. E., Alhimaidi, A. R., Elnesr, S. S., Almutairi, B. O., Amran, R. A., Hussein, E. O. S. and Swelum, A. A. (2020). Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poultry Science, 99:6946-6953.

Sabour, S., Tabeidian, S. A. and Sadeghi, G. (2019). Dietary organic acid and fiber sources affect performance, intestinal morphology, immune responses and gut microflora in broilers. Animal Nutrition, 5:156-162.

Sakamoto, K., Hirose, H., Onizuka, A., Hayashi, M., Futamura, N., Kawamura, Y. and Ezaki, T. (2000). Quantitative study of change in intestinal morphology and mucous jel on total parenteral nutrition in rats. Journal of Surgical Research, 94:99-106.

Salgado-Transito, L., Del Rio-Garcia, T. C., Hrjiona-Roman, J. L., Moreno-Martinez, E. and Mendez-Alboras, A. (2011). Effect of citric acid supplemented diets on aflatoxin degradation, growth performance and serum parameters in broiler chickens. Archive de Medicana Veterinaria, 43:215-222.

Samanya, M. and Yamauchi, K. (2002). Histological alterations of intestinal villi in chickens fed dried Bacillus Subtilis var natto. Comparative Biochemistry and Physiology Part A, 133:95-104.

Shang, Y., Regassa, A., Kim J. H. and Kim, W. K. (2016). The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella Enteritidis lipopolysaccharides. Poultry Science, 94:2887-2897.

Soomro, R. N., El-Hack, M. E. A., Shah, S. S., Taha, A. E., Alagawany, M., Swelum, A. A., Hussein, E. O. S., Ba-Aawdh, H. A., Saadeldin, I., El-Edel, M. A. and Tufarelli, V. (2019). Impact of restricting feed and probiotic supplementation on growth performance, mortality and carcass traits of meat-type quails. Animal Science Journal, 90:1388-1395.

Steel, R. G. D. and J. H. Torrie. (1980). Principles and Procedure Statistics. 2nd Edn. New York, NY: McGraw-Hill.

Suiryanrayna, M. V. A. N. and Ramana, J. V. (2015). A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6:45.

Tsirtsikos, P., Fegeros, K., Balaskas, C., Kominakis, A., and Mountzouris, K. M. (2012). Dietary probiotic inclusion level modulates intestinal mucin composition and mucosal morphology on broilers. Poultry Science, 91:1860-1868.

Upadhaya, S. D., Lee, K. Y. and Kim, I. K. 2014. Protected organic acid blends as an alternative to antibiotics in finishing pigs. Asian Australas Journal of Animal Science, 27:1600-1607.

Yu, W., Hao, X., Zhiyue, W., Haiming, Y. and Lei, X. (2020). Evaluation of the effect of Bacillus Subtilis and Pediococcus Acidilactici mix on serum biochemistry, growth promotation of body and visceral organs in lohmann brown chicks. Brazilian Journal of Poultry Science, 22:1-8.

Zhang, W. H., Jiang, Y., Zhu, Q. F., Gao, F., Dai, S. F., Chen, J. and Zhou, G. H. (2011). Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Bristish Poultry Science, 52:292-301.