Isolation and optimization to enhance anti-Streptococcus suis bacteriocin production by Lactobacillus plantarum RB01-SO
Main Article Content
Abstract
One hundred and twenty lactic acid bacteria (LAB) isolated from traditional Thai fermented vegetable products were tested against Streptococcus suis an important food borne pathogen causing severe disease in pig farming and consumers. Only one isolate designated as “RB01-SO” inhibited S. suis, and also Bacillus subtilis, Enterococcus faecalis, Lactobacillus sakei, Lactococcus lactis, Listeria innocua, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Streptococcus agalactiae, Aeromonas veronii, Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium and Vibrio harveyi. Inhibitory activities of RB01-SO cell free supernatant (CFS) were completely destroyed by various proteolytic enzymes including trypsin, α-chymotrypsin and pepsin, indicative of the proteinaceous or bacteriocin nature of the antimicrobial substance of RB01-SO. Bacteriocin production was highest when strain RB01-SO was cultured in MRS broth supplemented with 1% NaCl and initial pH of 7.0. Highest anti-S. suis activity of 400 AU/mL was obtained from the CFS after the bacterium was incubated at 30°C for 12 h at the above mentioned condition. Anti-S. suis activity of the CFS still remained after freeze-drying, suggesting its stability under the drying process. LAB that produced anti-S. suis agent with promising characteristics were successfully screened and isolated and showed potential for use in the food and feed industries
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abanoz, H. S. and Kunduhoglu, B. (2018). Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some pathogens and antibiotic-resistant bacteria. Korean Journal for Food Science of Animal Resources, 38:1064-1079.
Abbasiliasi, S., Tan, J. S., Ibrahim, T. A. T., Bashokouh, F., Ramakrishnan, N. R., Mustafa, S. and Ariff, A. B. (2017). Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. Royal Society of Chemistry Journals, 7:29395-29420.
Abo-Amer, A. E. (2011). Optimization of bacteriocin production by Lactobacillus acidophilus AA11, a strain isolated from Egyptian cheese. Annals of Microbiology, 61:445-452.
Afrin, S., Hoque, M. A., Sarker, A. K. and Satter, M. A. (2021). Characterization and profiling of bacteriocin-like substances produced by lactic acid bacteria from cheese samples. Access Microbiology, 3:000234.
Arai, S., Tohya, M., Yamada, R., Osawa, R., Nomoto, R., Kawamura, Y. and Sekizaki, T. (2015). Development of loop-mediated isothermal amplification to detect Streptococcus suis and its application to retail pork meat in Japan. International Journal of Food Microbiology, 208:35-42.
Bautista-Gallego, J., Arroyo-López, F., Rantsiou, K., Jiménez-Díaz, R., Garrido-Fernández, A. and Cocolin, L. (2013). Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Research International, 50:135-142.
Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., Kook, M. C., Kim, T. S., Hwang, J. K. and Pyun, Y. R. (2002). Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. Journal of Biotechnology, 95:225-235.
Chen, Y. S., Wu, H. C. and Yanagida, F. (2010). Isolation and characteristics of lactic acid bacteria isolated from ripe mulberries in Taiwan. Brazilian Journal of Microbiology, 41:916-921.
Cheung, P. Y., Lo, K. L., Cheung, T. T., Yeung, W. H., Leung, P. H. and Kam, K. M. (2008). Streptococcus suis in retail markets: How prevalent is it in raw pork. International Journal of Food Microbiology, 127:316-320.
Choi, I. H., Noh, J. S., Han, J. S., Kim, H. J., Han, E. S. and Song, Y. O. (2013). Kimchi, a fermented vegetable, improves serum lipid profiles in healthy young adults: randomized clinical trial. Journal of Medicinal Food, 16:223-229.
Crupper, S. S., Gies, A. J. and Iandolo, J. J. (1997). Purification and characterization of staphylococcin BacR1, a broad-spectrum bacteriocin. Applied and Environmental Microbiology, 63:4185-4190.
Delgado, A., Brito, D., Fevereiro, P., Tenreiro, R. and Peres, C. (2005a). Bioactivity quantification of crude bacteriocin solutions. Journal of Microbiological Methods, 62:121-124.
Delgado, A., Brito, D., Peres, C., Noe-Arroyo, F. and Garrido-Fernández, A. (2005b). Bacteriocin production by Lactobacillus pentosus B96 can be expressed as a function of temperature and NaCl concentration. Food Microbiology, 22:521-528.
Delgado, A., López, F. N. A., Brito, D., Peres, C., Fevereiro, P. and Garrido-Fernández, A. (2007). Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetics. Journal of Biotechnology, 130:193-201.
Dyaee, N. and Luti, K. J. K. (2019). Classical and statistical optimization by response surface methodology for enhancing biomass and bacteriocin production by Lactobacillus Plantarum. Iraqi Journal of Science, 60:494-508.
Ennahar, S., Asou, Y., Zendo, T., Sonomoto, K. and Ishizaki, A. (2001). Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. International Journal of Food Microbiology, 70:291-301.
Florou-Paneri, P., Christaki, E. and Bonos, E. (2013). Lactic acid bacteria as source of functional ingredients. In: Kongo M ed. Lactic Acid Bacteria - R and D for Food, Health and Livestock Purposes. pp. 589-614.
Gao, Y., Jia, S., Gao, Q. and Tan, Z. (2010). A novel bacteriocin with a broad inhibitory spectrum produced by Lactobacillus sake C2, isolated from traditional Chinese fermented cabbage. Food Control, 21:76-81.
Gao, Y., Li, D., Liu, S. and Zhang, L. (2015). Garviecin LG34, a novel bacteriocin produced by Lactococcus garvieae isolated from traditional Chinese fermented cucumber. Food Control, 50:896-900.
Gautam, N. and Sharma, N. (2015). A study on characterization of new bacteriocin produced from a novel strain of Lactobacillus spicheri G2 isolated from Gundruk-a fermented vegetable product of North East India. Journal of Food Science and Technology, 52:5808-5816.
Gottschalk, M., Xu, J., Calzas, C. and Segura, M. J. F. m. (2010). Streptococcus suis: a new emerging or an old neglected zoonotic pathogen. Future Microbiology, 5:371-391.
Goyette-Desjardins, G., Auger, J. P., Xu, J., Segura, M. and Gottschalk, M. (2014). Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerging Microbes and Infections, 3:e45.
Han, B., Yu, Z., Liu, B., Ma, Q. and Zhang, R. (2011). Optimization of bacteriocin production by Lactobacillus plantarum YJG, isolated from the mucosa of the gut of healthy chickens. African Journal of Microbiology Research, 5:1147-1155.
Herigstad, B., Hamilton, M. and Heersink, J. (2001). How to optimize the drop plate method for enumerating bacteria. Journal of Microbiological Methods, 44:121-129.
Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E. and Castrejón-Jiménez, N. S. (2021). Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11:979.
Herranz, C., Martinez, J., Rodriguez, J., Hernandez, P. and Cintas, L. (2001). Optimization of enterocin P production by batch fermentation of Enterococcus faecium P13 at constant pH. Applied Microbiology and Biotechnology, 56:378-383.
Ho, D. T. N., Le, T. P. T., Wolbers, M., Cao, Q. T., Nguyen, V. M. H., Tran, V. T. N., Le, T. P. T., Nguyen, H. P., Tran, T. H. C., Dinh, X. S., To, S. D., Hoang, T. T. H., Hoang, T., Campbell, J., Nguyen, V. V. C., Nguyen, T. C., Nguyen, V. D., Ngo, T. H., Spratt, B. G., Tran, T. H., Farrar, J. and Schultsz, C. (2011). Risk factors of Streptococcus suis infection in Vietnam. A case-control study. PLoS One, 6:e17604.
Hu, M., Zhao, H., Zhang, C., Yu, J. and Lu, Z. (2013). Purification and characterization of plantaricin 163, a novel bacteriocin produced by Lactobacillus plantarum 163 isolated from traditional Chinese fermented vegetables. Journal of Agricultural and Food Chemistry, 61:11676-11682.
Huang, Y., Luo, Y., Zhai, Z., Zhang, H., Yang, C., Tian, H., Li, Z., Feng, J., Liu, H. and Hao, Y. (2009). Characterization and application of an anti-Listeria bacteriocin produced by Pediococcus pentosaceus 05-10 isolated from Sichuan Pickle, a traditionally fermented vegetable product from China. Food Control, 20:1030-1035.
Hwanhlem, N., Chobert, J. M. and Aran, H. (2014). Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in southern Thailand as potential bio-control agents in food: Isolation, screening and optimization. Food Control, 41:202-211.
Ip, M., Fung, K. S. C., Chi, F., Cheuk, E. S. C., Chau, S. S. L., Wong, B. W. H., Lui, S., Hui, M. and Chan, P. K. S. (2007). Streptococcus suis in Hong Kong. Diagnostic Microbiology and Infectious Disease, 57:15-20.
Iyapparaj, P., Maruthiah, T., Ramasubburayan, R., Prakash, S., Kumar, C., Immanuel, G. and Palavesam, A. (2013). Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquatic Biosystems, 9:1-10.
Jiang, F., Guo, J., Cheng, C. and Gu, B. (2020). Human infection caused by Streptococcus suis serotype 2 in China: report of two cases and epidemic distribution based on sequence type. BMC infectious diseases, 20:1-6.
Jiang, J., Shi, B., Zhu, D., Cai, Q., Chen, Y., Li, J., Qi, K. and Zhang, M. (2012). Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Control, 23:338-344.
Jiménez-Díaz, R., Rios-Sanchez, R., Desmazeaud, M., Ruiz-Barba, J. L. and Piard, J. C. (1993). Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Applied and Environmental Microbiology, 59:1416-1424.
Kang, T. K. and Kim, W. J. (2010). Characterization of an amylase-sensitive bacteriocin DF01 produced by Lactobacillus brevis DF01 isolated from dongchimi, Korean fermented vegetable. Food Science of Animal Resources, 30:795-803.
Kelly, W., Asmundson, R. and Huang, C. (1996). Characterization of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum. Journal of Applied Bacteriology, 81:657-662.
Kerdsin, A., Dejsirilert, S., Puangpatra, P., Sripakdee, S., Chumla, K., Boonkerd, N., Polaichai, P., Tanimura, S., Takeuchi, D., Nakayame, T., Nakamura, S., Akeda, Y., Gottschalk, M., Sawanpanyalert, P. and Oishi, K. (2011). Genotypic profile of Streptococcus suis serotype 2 and clinical features of infection in humans, Thailand. Emerging Infectious Diseases, 17:835-842.
Kumar, V., Kumari, A., Angmo, K. and Bhalla, T. C. (2017). Isolation and characterization of lactic acid bacteria from traditional pickles of Himachal Pradesh, India. Journal of Food Science and Technology, 54:1945-1952.
Lal, G., Siddappa, G. and Tandon, G. (2010). Chutneys, sauces and pickles, preservation of fruits and vegetables. Indian Council of Agricultural Research Publication, New Delhi, 235-269 p.
Lalitha, M. (2004). Manual on antimicrobial susceptibility testing. In: Performance standards for antimicrobial testing: Twelfth Informational Supplement, CLSI: Wayne, PA, USA, pp. 454-456.
Leal-Sánchez, M. V., Jiménez-Díaz, R., Maldonado-Barragán, A., Garrido-Fernández, A. and Ruiz-Barba, J. L. (2002). Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Applied and Environmental Microbiology, 68:4465-4471.
LeBel, G., Piché, F., Frenette, M., Gottschalk, M. and Grenier, D. (2013). Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics. Peptides, 50:19-23.
Li, C., Bai, J., Cai, Z. and Ouyang, F. (2002). Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of Biotechnology, 93:27-34.
Liu, W., Pang, H., Zhang, H. and Cai, Y. (2014). Biodiversity of lactic acid bacteria. In: ZZhang, H. and Cai, Y. eds. Lactic acid bacteria, Springer Dordrecht, pp.103-203.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193:265-275.
Mahrous, H., Mohamed, A., Abd El-Mongy, M., El-Batal, A. and Hamza, H. (2013). Study bacteriocin production and optimization using new isolates of Lactobacillus spp. isolated from some dairy products under different culture conditions. Food and Nutrition Sciences, 4:342-356.
Marianelli, C., Petrucci, P., Comelli, M. C. and Calderini, G. (2014). Silver sucrose octasulfate (IASOS™) as a valid active ingredient into a novel vaginal gel against human vaginal pathogens: In vitro antimicrobial activity assessment. PLoS One, 9:1932-6203.
Martinez, F. A. C., Balciunas, E. M., Converti, A., Cotter, P. D. and Oliveira, R. P. D. S. (2013). Bacteriocin production by Bifidobacterium spp. A review. Biotechnology Advances, 31:482-488.
Mataragas, M., Drosinos, E., Tsakalidou, E. and Metaxopoulos, J. (2004). Influence of nutrients on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Antonie van Leeuwenhoek, 85:191-198.
Mataragas, M., Metaxopoulos, J., Galiotou, M. and Drosinos, E. (2003). Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Science, 64:265-271.
Melancon, D. and Grenier, D. (2003). Production and properties of bacteriocin-like inhibitory substances from the swine pathogen Streptococcus suis serotype 2. Applied and Environmental Microbiology, 69:4482-4488.
Mollendorff, J. W. V., Todorov, S. D. and Dicks, L. M. T. (2009). Optimization of growth medium for production of bacteriocins produced by Lactobacillus plantarum JW3BZ and JW6BZ, and Lactobacillus fermentum JW11BZ and JW15BZ isolated from boza. Trakia Journal of Sciences, 7:22-33.
Namasivayam, S. R., Angel, J. C. R., Bharani, R. A. and Karthik, M. (2014). Effect of media on bacteriocin production by Lactobacillus brevis and evaluation of anti-bacterial activity. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5:1129-1136.
Nandakumar, R. and Talapatra, K. (2014). Quantitative profiling of bacteriocins present in dairy-free probiotic preparations of Lactobacillus acidophilus by nanoliquid chromatography-tandem mass spectrometry. Journal of Dairy Science, 97:1999-2008.
Pachirat, O., Taksinachanekit, S., Mootsikapun, P. and Kerdsin, A. (2012). Human Streptococcus suis endocarditis: echocardiographic features and clinical outcome. Clinical Medicine Insights. Cardiology, 6:119-123.
Rajaram, G., Manivasagan, P., Thilagavathi, B. and Saravanakumar, A. (2010). Purification and characterization of a bacteriocin produced by Lactobacillus lactis isolated from marine environment. Advance Journal of Food Science and Technology, 2:138-144.
Sabo, S. D. S., Vitolo, M., González, J. M. D. and Oliveira, R. P. d. S. (2014). Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International, 64:527-536.
Sarika, A., Lipton, A. and Aishwarya, M. (2010). Bacteriocin production by a new isolate of Lactobacillus rhamnosus GP1 under different culture conditions. Advance Journal of Food Science and Technology, 2:291-297.
Seitz, M., Valentin-Weigand, P. and Willenborg, J. (2016). Use of antibiotics and antimicrobial resistance in veterinary medicine as exemplified by the swine pathogen Streptococcus suis. In: Stadler M., Dersch P. eds. How to Overcome the Antibiotic Crisis. Current Topics in Microbiology and Immunology, vol 398. Springer, Cham. pp.103-121.
Shin, M., Han, S., Ryu, J., Kim, K. and Lee, W. (2008). Isolation and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23‐2 isolated from Kimchi. Journal of Applied Microbiology, 105:331-339.
Somsri, A., Pilasombut, K., Ngamyeesoon, N. and Rumjuankiat, K. (2017). Detection and identification of bacterial contamination in meat by matrix-assisted laser desorption ionization-time of flight-mass spectrometry. International Journal of Agricultural Technology, 13:1487-1504.
Srimark, N. and Khunajakr, N. (2015). Characterization of the bacteriocin-like substance from Lactococcus lactis subsp. lactis WX153 against swine pathogen Streptococcus suis. Journal of Health Research, 29:259-267.
Suganthi, V. and Mohanasrinivasan, V. (2015). Optimization studies for enhanced bacteriocin production by Pediococcus pentosaceus KC692718 using response surface methodology. Journal of Food Science and Technology, 52:3773-3783.
Takeuchi, D., Kerdsin, A., Akeda, Y., Chiranairadul, P., Loetthong, P., Tanburawong, N., Areeratana, P., Puangmali, P., Khamisara, K., Pinyo, W., Anukul, R., Samerchea, S., Lekhalula, P., Nakayama, T., Yamamoto, K., Hirose, M., Hamada, S., Dejsirilert, S. and Oishi, K. (2017). Impact of a food safety campaign on Streptococcus suis infection in humans in Thailand. The American Journal of Tropical Medicine and Hygiene, 96:1370-1377.
Thirumurugan, A., Ramachandran, S. and Gobikrishnan, S. (2015). Optimization of medium components for maximizing the bacteriocin production by Lactobacillus plantarum ATM11 using statistical design. International Food Research Journal, 22:1272-1279.
Thu, I. S. L., Tragoolpua, K., Intorasoot, S., Anukool, U., Khamnoi, P., Kerdsin, A. and Tharinjaroen, C. S. (2021). Direct detection of Streptococcus suis from cerebrospinal fluid, positive hemoculture, and simultaneous differentiation of serotypes 1, 1/2, 2, and 14 within single reaction. Pathogens, 10:996.
Todorov, S. D. and Dicks, L. (2006). Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria: comparison of the bacteriocins. Process Biochemistry, 41:11-19.
Todorov, S. D. and Dicks, L. M. T. (2005). Effect of growth medium on bacteriocin production by Lactobacillus plantarum ST194BZ, a strain isolated from boza. Food Technology and Biotechnology, 43:165-173.
Todorov, S. D., Gotcheva, B., Dousset, X., Onno, B. and Ivanova, I. (2000). Influence of growth medium on bacteriocin production in Lactobacillus plantarum ST31. Biotechnology and Biotechnological Equipment, 14:50-55.
Todorov, S. D., Oliveira, R. and Vaz-Velho, M. (2012). Media optimization of bacteriocin ST22CH production by Lactobacillus sakei ST22CH isolated from salpicao, a traditional meat-product from Portugal. Chemical Engineering Transactions, 27:283-288.
Todorov, S. D., Prévost, H., Lebois, M., Dousset, X., LeBlanc, J. G. and Franco, B. D. (2011). Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya)-from isolation to application: Characterization of a bacteriocin. Food Research International, 44:1351-1363.
Todorov, S. D., Reenen, C. A. V. and Dicks, L. M. (2004). Optimization of bacteriocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer. Journal of General and Applied Microbiology, 50:149-157.
Turgis, M., Vu, K. D., Millette, M., Dupont, C. and Lacroix, M. (2016). Influence of environmental factors on bacteriocin production by human isolates of Lactococcus lactis MM19 and Pediococcus acidilactici MM33. Probiotics and Antimicrobial Proteins, 8:53-59.
Ullah, N., Xuejiao, W., Tengyu, L., Hanjing, G., Khan, S., Xi, L. Z. and Chao, F. X. (2017). Purification and primary characterization of a novel bacteriocin, LiN333, from Lactobacillus casei, an isolate from a Chinese fermented food. LWT Food Science and Technology, 84:867-875.
Wang, H., Dong, D., and Xie, Q. (2005). Analysis of infectious syndrome caused by Streptococcus suis type 2. Jiangsu Medical Journal, 31:419.
Woraprayote, W., Kingcha, Y., Amonphanpokin, P., Kruenate, J., Zendo, T., Sonomoto, K., Benjakul, S. and Visessanguan, W. (2013). Anti-listeria activity of poly (lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. International Journal of Food Microbiology, 167:229-235.
Woraprayote, W., Malila, Y., Sorapukdee, S., Swetwiwathana, A., Benjakul, S. and Visessanguan, W. (2016). Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Science, 120:118-132.
Woraprayote, W., Pumpuang, L., Tosukhowong, A., Roytrakul, S., Perez, R. H., Zendo, T., Sonomoto, K., Benjakul, S. and Visessanguan, W. (2015). Two putatively novel bacteriocins active against Gram-negative food borne pathogens produced by Weissella hellenica BCC 7293. Food Control, 55:176-184.
Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S. and Walker, B. (2018). Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. Amb Express, 8:1-14.
Yongkiettrakul, S., Maneerat, K., Arechanajan, B., Malila, Y., Srimanote, P., Gottschalk, M.,and Visessanguan, W. (2019). Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Veterinary Research, 15:5.
Zendo, T., Fukao, M., Ueda, K., Higuchi, T., Nakayama, J. and Sonomoto, K. (2003). Identification of the lantibiotic nisin q, a new natural nisin variant produced by lactococcus lactis 61-14 isolated from a river in japan. Bioscience, Biotechnology and Biochemistry, 67:1616-1619.
Zhang, J., Zhang, Y., Liu, S. N., Han, Y. and Zhou, Z. J. (2012a). Modelling growth and bacteriocin production by Pediococcus acidilactici PA003 as a function of temperature and pH value. Applied Biochemistry and Biotechnology, 166:1388-1400.
Zhang, X., Chang, X., Liu, G., Wu, P. and Li, P. (2012b). A newly anti-Streptococcus suis bacteriocin producing strain from unweaned piglets fecal matter: isolation, preliminary identification, and optimization of medium composition for enhanced bacteriocin production. Preparative Biochemistry and Biotechnology, 42:393-405.
Zhao, S., Han, J., Bie, X., Lu, Z., Zhang, C. and Lv, F. (2016). Purification and characterization of plantaricin JLA-9: a novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage. Journal of Agricultural and Food Chemistry, 64:2754-2764.