Cloning and expression of the antimicrobial peptide from Lactobacillus reuteri KUB-AC5 and its characterization

Main Article Content

Sobanbua, S.
Tangthong, J.
Suveatwatanakul, A.
Nakphaichit, M.
Keawsompong, S.
Nitisinprasert, S.

Abstract

Lactobacillus reuteri KUB-AC5 was isolated from chicken intestine and played an important role as probiotic in Salmonella growth inhibition and promoting the growth of broiler chicken. Gene coding for antimicrobial peptide from the strain KUB-AC5 (AMP-AC5) and characterization of its product were cloned. Genomic library cloning of gene coding for AMP-AC5 based on the size of homogeneous peptide of 4721.95 Dalton purified by amberlite adsorption-desorption, gel filtration chromatography, reversed phase HPLC and cation exchange chromatography, was successfully cloned into pNZ307 and expressed in Escherichia coli DH5α to obtain the recombinant clone E. coli ACE-C46. Its recombinant plasmid pACE-C46 was subsequently subcloned into pSIP609/L. plantarum TLG02 to obtain an active recombinant clone L. plantarum ACLP-C46-F2.1 which had recombinant plasmid containing an open reading frame I-C46-F2.1 (153 nucleotides). It deduced amino acid sequence of “YMLYKFLAGLFHTSIDSIYWSVTFIAPALALITYIVCWPDS” (ID number 2253028) which showed no similarity to bacteriocin. The AMP from both the wild type and the recombinant strain exhibited similar characters in stability at wide pH range of 2-9, high temperature up to 121°C and inhibition spectrum against both G+ and G- bacteria but not to lactic acid bacteria including closely related specie of L. reuteri resulting in a potential single AMP produced by the wild type. Furthermore, overexpression of kac5 into the wild type provided the recombinant L. reuteri ACLR-C46-F2.1 which exhibited higher inhibitory activities than the wild type for 1.6 folds. The novel AMP named KAC5 would be promising for food and feed safety uses in the future.

Article Details

How to Cite
Sobanbua, S., Tangthong, J., Suveatwatanakul, A., Nakphaichit, M., Keawsompong, S., & Nitisinprasert, S. (2020). Cloning and expression of the antimicrobial peptide from Lactobacillus reuteri KUB-AC5 and its characterization. International Journal of Agricultural Technology, 16(4), 1013–1036. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/7252
Section
Original Study

References

Axelsson, L. T., Chung, T. C., Dobrogosz, W. J. and Lindgren, S. E. (1989). Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial Ecology in Health and Disease, 2:131-136.

Baines, C. P., Wang, L., Cohen, M. V. and Downey, J. M. (1999). Myocardial protection by insulin is dependent on phospatidylinositol 3-kinase but not protein kinase C or KATP channels in the isolated rabbit heart. Basic Research in Cardiology, 94:188-198.

Borrero, J., Kunze, G., Jiménez, J. J., Böer, E., Gútiez, L., Herranz, C., Cintas, M. L. and Hernández, E. P. (2012). Cloning, production, and functional expression of the bacteriocin Enterocin A produced by Enterococcus faecium T136, by the Yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans. Applied and Environmental Microbiology, 78:5956-5961.

Casas, E., Shackelford, S. D., Keele, J. W., Stone, R. T., Kappes, S. M. and Koohmaraie, M. (2000). Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. Journal of Animal Science, 78:560-569.

Cintas, L. M., Rodriguez, J. M., Fernandez, M. F., Sletten, K., Nes, I. F., Hernandez, P. E. and Holo, H. (1995). Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Applied and Environmental Microbiology, 61:2643-2648.

Daba, H., Pandian, S., Gosselin, J. F., Simard, R. E., Huang, J. and Lacroix, C. (1991). Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Applied and Environmental Microbiology, 57:3450-3455.

Eijsink, V. G. H., Brurberg, M. B., Middelhoven, P. J. and Nes, I. F. (1996). Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. Journal of Bacteriology, 178:2232-2237.

Ennahar, S., Asou, Y., Zendo, T., Sonomoto, K. and Ishizaki, A. (2001). Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. International Journal of Food Microbiology, 70:291-301.

Fujimoto, S., Nakagami, Y. and Kojima, F. (2004). Optimal bacterial DNA isolation method using bead-beating technique. Retrieved from https://www.digital-biology.co.jp/manufactured/products/ms-100/pdf/report_ms-100_07.pdf.

Fuller, R. (1989). Probiotic in man and animal. Journal of Applied Bacteriology, 66:365-378.

Gabrielsen, C., Brede, D. A., Nes, I. F. and Diep, D. B. (2014). Circular Bacteriocins: Biosynthesis and Mode of Action. Applied and Environmental Microbiology, 80:6854-6862.

Gänzle, M. G., Holtzel, A., Walter, J., Jung, G. and Hammes, W. P. (2000). Characterization of Reutericyclin produced by Lactobacillus reuteri LTH2584. Applied and Environmental Microbiology, 66:4325-4333.

Gänzle, M. G., Weber, S. and Hammes, W. P. (1999). Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. International Journal of Food Microbiology, 46:207-217.

Gilliland, S. E. and Speck, M. L. (1977). Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. Journal of Food Protection, 40:820-823.

Hamsupo, K. (2005). Production and formulation of lactic acid bacteria producing antimicrobial substances as chicken probiotic adjuncts. (Master Thesis). Kasetsart University, Bangkok, Thailand.

Hegde, R. S. and Bernstein, H. D. (2006). The surprising complexity of signal sequences. Trends in Biochemical Sciences, 31:563-571.

Hoover, D. G. and Harlander, S. K. (1993). Screening methods for detecting bacteriocin activity, In Bacteriocins of lactic acid bacteria (Hoover DG, Steenscr LR); Academic press, California, USA, pp.23-29.

Jiménez, J. J., Diep, D. B., Borrero, J., Gútiez, L., Arbulu, S., Nes, I. F., Herranz, C., Cintas, L. M. and Hernández, P. E. (2015). Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microbial Cell Factories, 14:166-176.

Josson, K., Scheirlinck, T., Michiels, F., Platteeuw, C., Stanssens, P., Joos, H., Dhaese, P., Zabeau, M. and Mahillon, J. (1989). Characterization of a gram-positive broad-host-range plasmid isolated from Lactobacillus hilgardii. Plasmid, 21:9-20.

Kabuki, T., Saito, T., Kawai, Y., Uemura, J. and Itoh, T. (1997). Production, purification and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. International Journal of Food Microbiology, 34:145-156.

Kalchayanand, N., Dunne, P., Sikes, A. and Ray, B. (2004). Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins. International Journal of Food Microbiology, 91:91-98.

Karlskas, I. L., Maudal, K., Axelsson, L., Rud, I., Eijsink, V. G. and Mathiesen, G. (2014). Heterologous protein secretion in lactobacilli with modified pSIP vectors. PLoS One, 9:91-125.

Kaswurm, V., Nguyen, T.T., Maischberger, T., Kulbe, K. D. and Michlmayr, H. (2013). Evaluation of the food grade expression systems NICE and pSIP for the production of 2,5-diketo-D-gluconic acid reductase from Corynebacterium glutamicum. AMB Express, 3:7-16.

Kawai, Y., Ishii, Y., Uemura, K., Kitazawa, H., Saito, T. and Itoh, T. (2001). Lactobacillus reuteri LA6 and Lactobacillus gasseri LA39 isolated from faeces of the same human infant produce identical cyclic bacteriocin. Food Microbiology, 18:407-415.

Lai, E. M., Eisenbrandt, R., Kalkum, M., Lanka, E. and Kado, C. I. (2002). Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. Journal of Bacteriology, 184:327-330.

Lindgren, S. W. and Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentation. FEMS Microbiology Reviews, 87:149-163.

Liu, G., Wang, H., Griffiths, M. W. and Li, P. (2011). Heterologous extracellular production of enterocin P in Lactococcus lactis by a food-grade expression system. European Food Research and Technology, 233:123-129.

Liu, S. (2014). Enhanced antibacterial action of bacteriocin producing cells by binding to the target pathogen. (Doctoral Thesis) University of Helsinki.

Martin-Visscher, L. A., van Belkum, M. J. and Vederas, J. C. (2011). ClassIIc or circular bacteriocin. In Drider, D. and Rebuffat, S. Prokaryotic antimicrobial peptides: from genes to application (eds), Springer, Heidelberg, New York.

Mohamadi Sani, A., Ehsani, M. R. and Mazaheri Assadi, M. (2005). Application of Reuterin produced by Lactobacillus reuteri DSM 20016 to inhibit some food-born pathogens in UF-Feta-Cheese. 9th International Conference on Agricultural Biotechnology: Ten Years After, Ravello (Italien).

Montalbán-López, M., Sánchez-Hidalgo, M., Cebrián, R. and Maqueda, M. (2012). Discovering the bacterial circular proteins: bacteriocins, cyanobactins and pilins. Journal of Biological Chemistry, 287:27007-27013.

Moon, S. G., Kim, W. J. and Kim, M. (2002). Synergistic effects of bacteriocin producing Pediococcus acidilactici K10 and organic acids on inhibiting Escherichia coli O157:H7 and applications in ground beef. Journal of Microbiology and Biotechnology, 12:936-942.

Nakphaichit, M., Thanomwongwattana, S., Phraephaisarn, C., Sakamoto, N., Keawsompong, S., Nakayama, J. and Nitisinprasert, S. (2011). The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Journal of Poultry Science, 90:2753-2765.

Nakphaichit, M., Sobanbua, S., Siemuang, S., Vongsangnak, W., Nakayama, J. and Nitisinprasert, S. (2019). Protective effect of Lactobacillus reuteri KUB-AC5 against Salmonella Enteritidis challenge in chickens. Beneficial Microbes, 10:43-54.

Nguyen, T. T., Mathiesen, G., Fredriksen, L., Kittl, R., Nguyen, T. H., Eijsink, V. G. H., Haltrich, D. and Peterbauer, C. K. (2011a). A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. Journal of Agricultural and Food Chemistry, 59:5617-5624.

Nguyen, T. T., Nguyen, T. H., Maischberger, T., Schmelzer, P., Mthiesen, G., Eijsink, V. G. H., Haltrich, D. and Peterbauer, C. K. (2011b). Quantitative transcript analysis of the inducible expression system pSIP: comparison of the overexpression Lactobacillus spp. -galactosidases in Lactobacillus plantarum. Microbial Cell Factories, 10:46-54.

Nilsen, T., Nes, I. F. and Holo, H. (1998). An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. Journal of Bacteriology, 180:1848-1854.

Nitisinprasert, S., Nilphai, V., Bunyun, P., Sukyai, P., Doi, K. and Sonomoto, K. (2000). Screening and identification of effective thermotolerant Lactic acid bacteria producing antimicrobial activity against Escherichai coli and Salmonella sp. resistant to antibiotics. Kasetsart Journal (Natural Science), 34:387-400.

Oman, T. J. and van der Donk, W. A. (2010). Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nature Chemical Biology, 6:9-18.

Ouwehand, A. C. (1998). Anti-microbial components from lactic acid bacteria. In Salminen, S. and Von wright, A. (ed) Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd eds, Marcel Dekker Inc, New York.

Rojo-Bezares, B., Saenz, Y., Zarazaga, M., Torres, C. and Ruiz Larrea, F. (2007). Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. International Journal of Food Microbiology, 116:32-36.

Sak-Ubol, S., Namvijitr, P., Pechsrichuang, P., Haltrich, D., Nguyen, T. H., Mathiesen, G., Eijsink, V. G. H. and Yamabhai, M. (2016). Secretory production of a betamannanase and a chitosanase using a Lactobacillus plantarum expression system. Microbial Cell Factories 15:81. doi: 10.1186/s12934 016 0481 z.

Sambrook, J., Fritschi, E. F. and Maniatis, T. (1989). Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, New York.

Sambrook, J. and Russell, D. W. (2001). Molecular Cloning: a Laboratory Manual. 3nd ed. New York: Cold Spring Harbor Laboratory Press.

Scannell, A. G. M., Hill, C., Buckley, D. J. and Arendt, E. K. (1997). Determination of the influence of organic acids and nisin on shelf-life and microbiological safety aspects on fresh pork sausage. Journal of Applied Microbiology, 83:407-412.

Schoeni, J. L., Glass, K. A., McDermott, J. L. and Wong, A. C. (1995). Growth and penetration of Salmonella enteritidis, Salmonella heidelberg and Salmonella typhimurium in eggs. International Journal of Food Microbiology, 24:385-396.

Shefet, S. M., Sheldon, B. W. and Klamenhammer, T. R. (1995). Efficacy of optimized nisin-based treatments to inhibit Salmonella typhimurium and extend shelf-life to inhibit broiler carcasses. Journal of Food Protection, 58:1077-1082.

Silva, M., Jacobus, N. V., Deneke, C. and Gorbach, S. L. (1987). Antimicrobial substance from a human Lactobacillus strain. Antimicrobial Agents and Chemotherapy, 31:1231-1233.

Talarico, T. L., Casas, I. A., Chung, T. C. and Dobrogosz, W. J. (1988). Production and isolation of Reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrobial Agents and Chemotherapy, 32:1854-1858.

Therdtatha, P., Tandumrongpong, C., Pilasombut, K., Matsusaki, H., Keawsompong, S. and Nitisinprasert, S. (2016). Characterization of antimicrobial substance from Lactobacillus salivarius KL‑D4 and its application as biopreservative for creamy filling. Springer Plus 5(1060), doi:10.1186/s40064-016-2693-4.

Toba, T., Yoshioka, E. and Itoh, T. (1991). Acidophilucin A, a new heat-labile bacteriocin produced by Lactobacillus acidophilus LAPT 1060. Letters in Applied Microbiology, 12:106-108.

Wehr, H. M. and Frank, J. H. (2004). Standard methods for the microbiological examination of dairy products, 17th Ed., APHA Inc., Washington, D.C.