Plant lectins have antagonistic effects against Coronavirus family: Natural products can control Coronaviral infections: A review
Main Article Content
Abstract
From the end of December 2019, Corona Virus Disease – 19 (COVID – 19) is the fear of people throughout the world. The causal organism behind COVID – 19 is SARS – CoV – 2 (Severe acute respiratory syndrome corona virus). This virus creates respiratory problems in human beings. WHO declared COVID – 19 as a pandemic disease because of its severe infection development capability. Like many other enveloped viruses, SARS – CoV – 2 carries glycoproteins on their surface. These glycoproteins are mainly responsible for the infection processes. They have involved in the receptor binding phenomenon. These glycoproteins are also involved in retrovirus particle and host cell membrane fusion. So, they may be potential targets for the development of novel corona viral therapies. Carbohydrate - Binding Agents (commonly called CBA) have antiviral activity towards the Corona virus. Plant lectins have anti-viral activities against Coronavirus species. In this review, we discussed thoroughly about the role of plant lectins in destroying Coronavirus infection. Plant lectins may be the potential source of herbal drugs of COVID – 19.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W. and De Clercq, E. (1992). The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral research, 18:191-207.
Coronavirinae in ViralZone. Available online: https://viralzone.expasy.org/785 (accessed on 28 January 2019).
Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., Berger, A., Burguière, A. M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J. C., Müller, S., Rickerts, V., Doerr, H. W. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England journal of medicine, 348:1967-1976.
Fan, Y., Zhao, K., Shi, Z. L. and Zhou, P. (2019). Bat Coronaviruses in China. Viruses,11:210.
Ge, X. Y., Wang, N., Zhang, W., Hu, B., Li, B., Zhang, Y. Z., Zhou, J. H., Luo, C. M., Yang, X. L., Wu, L. J., Wang, B., Zhang, Y., Li, Z. X. and Shi, Z. L. (2016). Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virologica Sinica, 31:31-40.
Graham, R. L., Donaldson, E. F. and Baric, R. S. (2013). A decade after SARS: strategies for controlling emerging coronaviruses. Nature reviews. Microbiology, 11:836-848.
Keyaerts, E., Vijgen, L., Pannecouque, C., Van Damme, E., Peumans, W., Egberink, H., Balzarini, J. and Van Ranst, M. (2007). Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral research, 75:179-187.
Kim, J. M., Chung, Y. S., Jo, H. J., Lee, N. J., Kim, M. S., Woo, S. H., Park, S., Kim, J. W., Kim, H. M. and Han, M. G. (2020). Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong public health and research perspectives, 11:3-7.
Kumaki, Y., Wandersee, M. K., Smith, A. J., Zhou, Y., Simmons, G., Nelson, N. M., Bailey, K. W., Vest, Z. G., Li, J. K., Chan, P. K., Smee, D. F. and Barnard, D. L. (2011). Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral research, 90:22-32.
Lannoo, N. and Van Damme, E. J. (2014). Lectin domains at the frontiers of plant defense. Frontiers in plant science, 5:397.
Majumdar, A., Malviya, N. and Alok, S. (2020). An overview on COVID-19 outbreak: epidemic to pandemic. International Journal of Pharmaceutical Sciences and Research, 11:1958-68.
Mazalovska, M. and Kouokam, J. C. (2018). Lectins as Promising Therapeutics for the Prevention and Treatment of HIV and other potential coinfections. BioMed Research International, 1-12.
Millet, J. K., Séron, K., Labitt, R. N., Danneels, A., Palmer, K. E., Whittaker, G. R., Dubuisson, J. and Belouzard, S. (2016). Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral research, 133:1-8.
Mori, T., O’Keefe, B. R., Sowder, R. C., Bringans, S., Gardella, R., Berg, S., Cochran, P., Turpin, J. A., Buckheit, R. W., McMahon, J. B. and Boyd, M. R. (2005). Isolation and characterization of griffithsin, a novel HIV inactivating protein, from the red alga Griffithsia sp. The Journal of Biological Chemistry, 280:9345-9353.
Shibuya, N., Goldstein, I. J., Shafer, J. A., Peumans, W. J. and Broekaert, W. F. (1986). Carbohydrate binding properties of the stinging nettle (Urtica dioica) rhizome lectin. Archives of biochemistry and biophysics, 249:215-224.
Singh, R. S. and Walia, A. K. (2018). Lectins from red algae and their biomedical potential. Journal of applied phycology, 30:1833-1858.
Subissi, L., Posthuma, C. C., Collet, A., Zevenhoven-Dobbe, J. C., Gorbalenya, A. E., Decroly, E., Snijder, E. J., Canard, B. and Imbert, I. (2014). One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences of the United States of America, 111:E3900-E3909.
Van der Meer, F. J., De Haan, C. A., Schuurman, N. M., Haijema, B. J., Verheije, M. H., Bosch, B. J., Balzarini, J. and Egberink, H. F. (2007). The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. The Journal of antimicrobial chemotherapy, 60:741-749.
Wang, L. F. and Cowled, C. (2015). Bats and Viruses: A New Frontier of Emerging Infectious Diseases. Retrieved from https://doi.org/10.1002/9781118818824.
WHO. Coronavirus disease (COVID-2019) situation reports. Situation report—55. March 15, 2020.Retrieved from https://www.who.int/docs/default-source/ coronaviruse/situation-reports/20200315-sitrep-55-covid-19. pdf?sfvrsn=33daa5cb_6 (accessed March 16, 2020).
WHO. WHO Virtual press conference on COVID-19. March 11, 2020.Retrieved from https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-coronavirus-press-conference-full-and-final 11mar2020.pdf?sfvrsn=cb432bb3_2 (accessed March 16, 2020).
Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Dong, J., Sun, L., Zhu, Y., Du, J., Yang, F., Zhang, S. and Jin, Q. (2016). Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. The ISME journal,10:609-620.
Yang, X. L., Tan, C. W., Anderson, D. E., Jiang, R. D., Li, B., Zhang, W., Zhu, Y., Lim, X. F., Zhou, P., Liu, X. L., Guan, W., Zhang, L., Li, S. Y., Zhang, Y. Z., Wang, L. F. and Shi, Z. L. (2019). Characterization of a filovirus (Měnglà virus) from Rousettus bats in China. Nature microbiology, 4:390-395.
Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. and Fouchier, R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England journal of medicine, 367:1814-1820.
Zhou, P., Fan, H., Lan, T. et al. (2018). Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 556:255-258.