Species diversity, tetracycline resistance and virulence factor gene profile of pathogenic Aeromonas spp. isolated from Nile tilapia seed farms in southern Thailand

Main Article Content

U-taynapun, K.
Chirapongsatonkul, N.

Abstract

The pathogenic bacteria causing motile Aeromonas septicemia (MAS) in Nile tilapia seeds cultured in southern Thailand between 2016 and 2020 were identified and tested for its antibiotic resistance ability against tetracycline drugs. In addition, tetracycline resistance genes and virulence genes were determined in the tetracycline-resistant Aeromonas spp. Our results indicated that almost 70% (172/250 isolates) was tetracycline resistance. According to the biochemical test, 250 isolates were assigned to 7 different platforms. Five isolates from each biochemical platform were identified by 16S rRNA gene sequence and phylogenetic reconstruction analysis. A. veronii biovar veronii, A. veronii biovar sobria, A. hydrophila, A. caviae, and A. jandaei were identified of which A. veronii biovar veronii was a dominant species. Efflux antibiotic genes (tetA, tetB, tetC, tetD, and tetE) were only found in the tetracycline-resistant Aeromonas spp. The predominant tetracycline resistance gene detected was tetA. Multiple tet genes were found in the tetracycline-resistant Aeromonas spp. In addition, 9 different virulence factor gene profiles of lipase, elastase, enolase, aerolysin (aerA), and heat-labile cytotonic enterotoxin (alt) were established. Twelve of 35 isolates (34.29%) had 3 virulence genes; 6 (17.14%) for lipase/enolase/alt, 3 (8.57%) for lipase/enolase/aerA, 2 (5.71%) for elastase/enolase/aerA, and 1 (2.86%) for elastase/enolase/alt. Our results suggested that there is a variation in isolated Aeromonas spp. with different phenotypes of tetracycline resistance and genotypes of tetracycline resistance genes and virulence factor genes.

Article Details

How to Cite
U-taynapun, K., & Chirapongsatonkul, N. (2022). Species diversity, tetracycline resistance and virulence factor gene profile of pathogenic Aeromonas spp. isolated from Nile tilapia seed farms in southern Thailand. International Journal of Agricultural Technology, 18(3), 1293–1306. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/7344
Section
Original Study

References

Aarestrup, F. M., Agerso Y., Gerner-Smidt P., Madsen M. and Jensen L. B. (2000). Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Microbiology and Infectious Disease, 37:127-137.

Akinbowale, O. L., Peng, H. and Barton, M. D. (2006). Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of Applied Microbiology, 100:1103-1113.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tools. Journal of Molecular Biology, 215:403-410.

Azzam-Sayuti, M., Ian-Salwany, M. Y., Zamri-Saad, M., Yusof, M. T., Annas, S., Najihah, M. Y., Liles, M. R., Monir, M. S., Zaidi, Z. and Amal, M. N. A. (2021). The prevalence, putative virulence genes and antibiotic resistance profiles of Aeromonas spp. isolated from cultured freshwater fishes in peninsular Malaysia. Aquaculture, 540:736719.

Bebak, J., Wagner, B., Burnes, B. and Hanson, T. (2015). Farm size, seining practices, and salt use: risk factors for Aeromonas hydrophila outbreaks in farm-raised catfish, Alabama, USA. Preventive Veterinary Medicine, 118:161-168.

Chirapongsatonkul, N., Mueangkan, N., Wattitum, S. and U-taynapun, K. (2019). Comparative evaluation of the immune responses and disease resistance of Nile tilapia (Oreochromis niloticus) induced by yeast β-glucan and crudeglucan derived from mycelium in the spent mushroom substrate of Schizophyllum commune. Aquaculture Reports, 15:100205.

Chirapongsatonkul, N., Srichanun, M. and U-taynapun, K. (2018). Virulence factor gene profiles of Aeromonas veronii isolated from diseased Nile tilapia (Oreochromis niloticus) in Nakhon Si Thammarat province and its expression towards diurnal water temperature changes. International Journal of Agricultural Technology, 14:1115-1128.

Clinical and Laboratory Standards Institute (CLSI) (2013). Performance standards for antimicrobial susceptibility testing; Twenty-third informational supplement. CLSI document M100-S23. Clinical and Laboratory Standards Institute, Wayne, USA.

DePaola, A. and Roberts, M. C. (1995). Class D and E tetracycline resistance determinants in gram-negative catfish pond bacteria. Molecular and Cellular Probes, 9:311-313.

Dong, H. T., Nguyen, V. V., Le, H. D., Sangsuriya, P., Litrakorn, S., Saksmerprome, V., Senapin, S. and Rodkhum, C. (2017). Naturally concurrent infections of bacterial and viral pathogens in disease outbreaks in cultured Nile tilapia (Oreochromis niloticus) farms. Aquaculture, 488:427-435.

Esteve, C., Alcaide, E. and Gimenez, M. J. (2015). Multidrug-resistant (MDR) Aeromonas recovered from the metropolitan area of Valencia (Spain): diseases spectrum and prevalence in the environment. European Journal of Clinical Microbiology & Infectious Diseases, 34:137-145.

FAO (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. Rome.

Gevers, D., Danielsen, M., Huys, G. and Swings, J. (2003). Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Applied and Environmental Microbiology, 69:1270-1275.

Higuera-Llantén, S., Vásquez-Ponce, F., Barrientos-Espinoza, B., Mardones, F. O., Marshall, S. H. and Olivares-Pacheco, J. (2018). Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. PLoS ONE, 13:e0203641.

Kim, J. H., Hwang, S. Y., Son, J. S., Han, J. E., Jun, J. W., Shin, S. P., Choresca, C. Jr., Choi, Y. J., Park, Y. H. and Park, S. C. (2011). Molecular characterization of tetracycline- and quinolone-resistant Aeromonas salmonicida isolated in Korea. Journal of Veterinary Science, 12:41-48.

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111-120.

Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35:1547-1549.

Lin, X., Ruan, J., Huang, L., Zhao, J. and Xu, Y. (2021). Comparison of the elimination effectiveness of tetracycline and AmpC β-lactamase genes in a municipal wastewater treatment plant using four parallel processes. Ecotoxicology, 30:1586-1597.

Liu, C., Chang, O. Q., Zhang, D. F., Li, K. B., Wang, F., Lin, M. H., Shi, C. B., Jing, L., Wang, Q. and Bergmann, S. M. (2018). Aeromonas shuberti as a couse of multi-organ necrosis in internal organs of Nile tilapia, Oerochromis niloticus. Journal of Fish Diseases, 41:1529-1538.

Miranda, C. D., Kehrenberg, C., Ulep, C., Schwarz, S. and Roberts, M. C. (2003). Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrobial Agents and Chemotherapy, 47:883-888.

Miranda, C. D., Tello, A. and Keen, P. L. (2013). Mechanisms of antimicrobial resistance in finfish aquaculture environments. Fronteirs in Microbiology, 4:233.

Nawaz, M., Sung, K., Khan, S. A., Khan, A. A. and Steele, R. (2006). Biochemical and molecular characterization of tetracycline-resistant Aeromonas veronii isolates from catfish. Applied and Environmental Microbiology, 72:6461-6466.

Ng, L. K., Martin, I., Alfa, M. and Mulvey. M. (2001). Multiplex PCR for the detection of tetracycline resistant genes. Molecular and Cellular Probes, 15:209-215.

Olivares, J., Bernardini, A., Garcia-Leon, G., Corona, F., Sanchez, M. B. and Martinez, J. L. (2013). The intrinsic resistome of bacterial pathogens. Frontiers in Microbiology, 4:103.

Oliverira, S. T. L., Veneroni-Gouveia, G. and Costa, M. M. (2012). Molecular characterization of virulence factors in Aeromonas hydrophila obtained from fish. Pesquisa Veterinária Brasileira, 32:701-706.

Palleroni, N. J. (2010). The Pseudomonas story. Environmental Microbiology, 12:1377-1383.

Raj, N. S., Swaminathan, R., Dharmaratnam, A., Raja, S. A., Ramraj, D. and Lal, K. K. (2019). Aeromonas veronii caused bilateral exophthalmia and mass mortality in cultured Nile tilapia, Oreochromis niloticus (L.) in India. Aquaculture, 512:734278.

Reyes, A. T. (2018). Outbreak investigation of Aeromonas hydrophila in tilapia grow-out farms in Minalin, Pampanga, Philippines. International Journal of Biology, Pharmacy and Allied Sciences, 7: 1464-1473.

Roges, E. M., Gonçalves, V. D., Cardoso, M. D., Festivo, M. L., Siciloano, S., Berto, L. H., Pereira, V. L. A., Rodrigues, D. P. and de Aquino, M. H. C. (2020). Virulence-associated genes and antimicrobial resistance of Aeromonas hydrophila isolates from animals, food, and human sources in Brazil. BioMed Research International, 1052607.

Sadique, A., Neogi, S. B., Bashar, T., Sultana, M., Johura, F.-T., Islam, S., Hassan, N. A., Huq, A., Colwell, R. R. and Alam, M. (2021). Dynamics, diversity, and virulence of Aeromonas spp. in homestead pond water in coastal Bangladesh. Fronteirs in Public Health, 9:692166.

Schmidt, A. S., Bruun, M. S., Dalsgaard, I. and Larsen, J. L. (2001). Incidence, distribution and spread of tetracycline resistance determinants and integrin-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Applied and Environmental Microbiology, 67:5675-5682.

Sha, J., Erova, T. E., Alyea, R. A., Wang, S., Olano, J. P., Pancholi, V. and Chopra, A. K. (2009). Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of Aeromonas hydrophila. Journal of Bacteriology, 191:3095-3107.

Srisapoome, S. and Areechon, N. (2017). Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): Laboratory and on-farm trials. Fish & Shellfish Immunology, 67:199-210.

U-taynapun, K., Mueangkan, N. and Chirapongsatonkul, N. (2018). Efficacy of herbal extracts to control multi-antibiotics resistant (MAR) Aeromonas veronii isolated from motile Aeromonas septicemia (MAS)-Exhibiting Nile tilapia (Oreochromis niloticus). International Journal of Agricultural Technology, 14:2191-2206.

U-taynapun, K., Nganwisuthiphan, T. and Chirapongsatonkul, N. (2020). Species diversity and existence of virulence genes in clinical Aeromonas spp. causing motile Aeromonas septicemia (MAS) isolated from cultured Nile tilapia (Oreochromis niloticus). International Journal of Agricultural Technology, 16:749-760.

Verner-Jeffreys, D. W., Welch, T. J., Schwarz, T., Pond, M. J., Woodward, M. J., Haig, S. J., Rimmer, G. S., Roberts, E., Morrison, V. and Baker-Austin, C. (2009). High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS One 4:e8388.

Weisburg, W. C., Barns, S. M., Pelletier, D. A. and Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173:697-703.

Xu, Y. X., Zhang, H. P., Xu, G. Y., Muhamamda, I., Dong, W. L., Wang, Y. M., Kong, L. C. and Ma, H. X. (2021). Virulence and drug resistance of Aeromonas veronii isolated from shellfish. Thai Journal of Veterinary Medicine, 51:21-27.

Yang, Q., Zhao, M., Wang, K. Y., Wang, J., He, Y., Wang, E. L., Liu, T., Chen, D. F. and Lai, W. (2017). Multidrug-resistant Aeromonas veronii recovered from channel catfish (Ictalurus punctatus) in China: Prevalence and mechanisms of fluoroquinolone resistance. Microbial Drug Resistance, 23:473-479.