Production of chlorophyll-rich powder from Moringa oleifera leaves using dehumidification and intermittent drying: impact on drying characteristics and chlorophyll retention.

Main Article Content

Djaeni, M.
Hadiyanto, H.
Suherman, S.
Handayani, N. A.
Utari, F. D.

Abstract

Results demonstrated that zeolite enhanced moisture removal efficiency, with significant reductions in moisture ratios which observed at higher temperatures. Specifically, at 40°C, the moisture ratio improved from 0.9175 to 0.8924, while at 80°C, it decreased from 0.8039 to 0.6275. Intermittent tempering further optimized  moisture removal, achieving a moisture ratio of 0.4199 with a 20-minute tempering period at 60°C. The study employed the Henderson & Pabis model which achieved high predictive accuracy for drying characteristics. Notably, chlorophyll retention was maximized at lower temperatures and optimal tempering durations. Overall, this research underscored the potential of combining zeolite and intermittent drying techniques to enhance moisture removal and preserve chlorophyll, offering a practical solution for producing high-quality Moringa leaf powder in both small-scale and industrial settings.

Article Details

How to Cite
Djaeni, M., Hadiyanto, H., Suherman, S., Handayani, N. A., & Utari, F. D. (2025). Production of chlorophyll-rich powder from Moringa oleifera leaves using dehumidification and intermittent drying: impact on drying characteristics and chlorophyll retention. International Journal of Agricultural Technology, 21(5), 1687–1702. https://doi.org/10.63369/ijat.2025.21.5.1687-1702
Section
Original Study

References

Abdulkadir, A. R., Jahan, Md. S. and Zawawi, D. D. (2015). Effect of chlorophyll content and maturity on total phenolic, total flavonoidn contents and antioxidant activity of Moringa oleifera leaf (Miracle tree). Journal of Chemical and Pharmaceutical Research, 7:1147-1152.

Ademiluyi, A. O., Aladeselu, O. H., Oboh, G. and Boligon, A. A. (2018). Drying alters the phenolic constituents, antioxidant properties, α-amylase, and α-glucosidase inhibitory properties of Moringa (Moringa oleifera) leaf. Food Science and Nutrition, 6:2123-2133.

Agnieszka, C. and Lenart, A. (2011). Freeze-drying – application in food processing and biotechnology – A review. Polish Journal of Food and Nutrition Sciences, 61:165-171.

Arslan, D. and Musa Özcan, M. (2010). Study the effect of sun, oven and microwave drying on quality of onion slices. LWT - Food Science and Technology, 43:1121-1127.

Aryanti, N. and Nafiunisa, A. (2017). Extraction, characterization and degradation of chlorophyll from Suji Leaves (Pleomele angustifolia). Oriental Journal of Chemistry, 33:3185-3190.

Asiah, N., Djaeni, M. and Hii, C. L. (2017). Moisture transport mechanism and drying kinetic of fresh harvested red onion bulbs under dehumidified air. International Journal of Food Engineering, 13. https://doi.org/10.1515/ijfe-2016-0401

Atuonwu, J. C., Jin, X., van Straten, G., Deventer Antonius, H. C. van and van Boxtel, J. B. (2011a). Reducing energy consumption in food drying: Opportunities in desiccant adsorption and other dehumidification strategies. Procedia Food Science, 1:1799-1805.

Atuonwu, J. C., Van Straten, G., Van Deventer, H. C. and Van Boxtel, A. J. B. (2011b). Optimizing energy efficiency in low temperature drying by zeolite adsorption and process integration. Chemical Engineering Transactions, 25.

A’yuni, D. Q., Djaeni, M., Asiah, N. and Subagio, A. (2022). Enhancement of onion bulb drying with air dehumidification assisted dryer. AIMS Agriculture and Food, 7:168-183.

Aznury, M., Zikri, A., Saputra, M. F. and Rachmadona, N. (2021). Analyzing effect of temperature on drying Moringa (Moringa Oleifera) leaves using photovoltaic tray dryer, 48.

Dehghannya, J., Hosseinlar, S. H. and Heshmati, M. K. (2018). Multi-stage continuous and intermittent microwave drying of quince fruit coupled with osmotic dehydration and low temperature hot air drying. Innovative Food Science & Emerging Technologies, 45:132-151.

Díaz-Bandera, D., Villanueva-Carvajal, A., Dublán-García, O., Quintero-Salazar, B. and Dominguez-Lopez, A. (2015). Assessing release kinetics and dissolution of spray-dried Roselle (Hibiscus sabdariffa L.) extract encapsulated with different carrier agents. LWT - Food Science and Technology, 64:693-698.

Djaeni, M., A’yuni, D., Alhanif, M., Hii, C. and Kumoro, A. (2021). Air dehumidification with advance adsorptive materials for food drying: A critical assessment for future prospective. Drying Technology, 39:1-22.

Golmohammadi, M., Assar, M., Rajabi-Hamaneh, M. and Hashemi, S. J. (2015). Energy efficiency investigation of intermittent paddy rice dryer: Modeling and experimental study. Food and Bioproducts Processing, 94:275-283.

Golmohammadi, M., Foroughi-Dahr, M., Rajabi-Hamaneh, M., Shojamoradi, A. R. and Hashemi, S. J. (2016). Study on drying kinetics of paddy rice: Intermittent drying. Iranian Journal of Chemistry and Chemical Engineering, 35:105-117.

Hasizah, A., Djalal, M., Mochtar, A. A. and Salengke, S. (2022). Fluidized bed drying characteristics of moringa leaves and the effects of drying on macronutrients. Food Science and Technology (Brazil), 42:1-11.

Kumar, C., Karim, M. A. and Joardder, M. U. H. (2014a). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121:48-57.

Kumar, S. S., Manoj, P., Shetty, N. P. and Giridhar, P. (2014b). Effect of different drying methods on chlorophyll, ascorbic acid and antioxidant compounds retention of leaves of Hibiscus sabdariffa L. Journal of the Science of Food and Agriculture, 95:1812-1820.

Lípová, L., Krchňák, P., Komenda, J. and Ilík, P. (2010). Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1797:63-70.

Mallenakuppe, R., Homabalegowda, H., Gouri, M. D., Basavaraju, P. S. and Chandrashekharaiah, U. B. (2019). History, Taxonomy and Propagation of Moringa oleifera-A Review. SSR Institute of International Journal of Life Sciences, 5:2322-2327.

Md Saleh, R., Kulig, B., Emiliozzi, A., Hensel, O. and Sturm, B. (2020). Impact of critical control-point based intermittent drying on drying kinetics and quality of carrot (Daucus carota var. laguna). Thermal Science and Engineering Progress, 20:100682.

Oyeyinka, A. T. and Oyeyinka, S. A. (2018). Moringa oleifera as a food fortificant: Recent trends and prospects. Journal of the Saudi Society of Agricultural Sciences, 17:127-136.

Pareek, A., Pant, M., Gupta, M. M., Kashania, P., Ratan, Y., Jain, V., Pareek, A. and Chuturgoon, A. A. (2023). Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. International Journal of Molecular Sciences, 24:2098.

Pereira, J. C. A., da Silva, W. P., Gomes, J. P., Queiroz, A. J. de M., de Figueirêdo, R. M. F., de Melo, B. A., Santiago, Â. M., de Lima, A. G. B. and de Macedo, A. D. B. (2020). Continuous and intermittent drying of rough rice: effects on process effective time and effective mass diffusivity. Agriculture (Switzerland), 10:1-13.

Rahmawati, I., Anggraeni, S. D., Bernika, S. O. and Julianti, A. I. (2023). Phenolic content and antioxidant activity of Moringa oleifera leaf infusions and tea. AIP Conference Proceedings, 2572. https://doi.org/10.1063/5.0118400

Sasongko, S. B., Hadiyanto, H., Djaeni, M., Perdanianti, A. M. and Utari, F. D. (2020). Effects of drying temperature and relative humidity on the quality of dried onion slice. Heliyon, 6:e04338.

Singh, V., Arulanantham, A., Parisipogula, V., Arulanantham, S. and Biswas, A. (2018). Moringa olifera: Nutrient dense food source and world’s most useful plant to ensure nutritional security, good health and eradication of malnutrition. European Journal of Nutrition & Food Safety, 8:204-214.

Turan, Y. O. and Firatligil, E. F. (2019). Modelling and characteristics of thin layer convective air-drying of thyme (Thymus vulgaris) leaves. Czech Journal of Food Sciences, 37:128-134.

Zhang, J., Han, C. and Liu, Z. (2009). Absorption spectrum estimating rice chlorophyll concentration: preliminary investigations. Journal of Plant Breeding and Crop Science, 1:223-229.