Effect of κ-carrageenan film enriched with limonene extract and curcumin as an indicator of freshness.
Main Article Content
Abstract
This research investigated the creation of κ-carrageenan films incorporating limonene raw extract and curcumin, aiming to serve as effective freshness indicators in food packaging. Fourier Transform Infrared Spectroscopy and Field Emission Scanning Electron Microscopy were employed for film analysis. FTIR spectra indicated the presence of characteristic functional groups including O–H, C–H, C=C, C–O, C–OH, sulphate esters, C=O stretching, and CO–O–SO₃ stretching vibrations. FESEM imaging demonstrated a homogeneous surface with a dense and compact structure. The films' functional efficacy was assessed using chicken meat as a model system. The addition of curcumin and limonene facilitated observable color alterations corresponding to meat freshness, confirming the film's utility as a freshness indicator. In addition to indicating spoilage, these natural additives conferred antioxidant and antibacterial properties. The study underscored the potential of biodegradable κ-carrageenan films fortified with natural bioactive compounds as sustainable packaging solutions. However, further research is recommended to optimize limonene and curcumin concentrations and to validate their performance across diverse food matrices, thereby ensuring their commercial viability.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abedi‐Firoozjah, R., Salim, S. A., Hasanvand, S., Assadpour, E., Azizi‐Lalabadi, M., Prieto, M. A. and Jafari, S. M. (2023). Application of smart packaging for seafood: A comprehensive review. Comprehensive reviews in food science and food safety, 22:1438-1461.
Alipour, A., Rahaiee, S., Litkohi, H. R., Jamali, S. N. and Jafari, S. M. (2023). Development and optimization of whey protein-Lepidium perfoliatum gum packaging films: An approach towards antimicrobial and biodegradable films. Industrial Crops and Products, 196:116447.
AOAC. (1990). Official methods of analysis of the AOAC, 15th ed. Methods 932.06,925.09, 985.29, 923.03. Association of official analytical chemists. Arlington, VA, USA.
Arrieta, M. P., López, J., Ferrándiz, S. and Peltzer, M. A. (2013). Characterization of PLA limonene blends for food packaging applications. Polymer Testing, 32:760,768.
Barbosa, M. H. R., Goncalves, S. D. A., Marangoni Junior, L., Alves, R. M. V. and Vieira, R. P. (2022). Physicochemical properties of chitosan-based films incorporated with limonene. Journal of Food Measurement and Characterization, 16:2011-2023.
Bhattarai, S. and Janaswamy, S. (2023). Biodegradable films from the lignocellulosic residue of switchgrass. Resources, Conservation and Recycling, 201:107322.
Brychkova, G., Fluhr, R. and Sagi, M. (2008). Formation of xanthine and the use of purine metabolites as a nitrogen source in Arabidopsis plants. Plant Signaling & Behavior, 3:999-1001.
Cataldo, F., Keheyan, Y. and Baccaro, S. (2004). Gamma-radiolysis of chiral molecules: R (+)-limonene, S (-)-limonene and R (-)-a-phellandrene. Journal of radioanalytical and nuclear chemistry, 262:423-428.
Cheng, C., Chen, S., Su, J., Zhu, M., Zhou, M., Chen, T. and Han, Y. (2022). Recent advances in carrageenan-based films for food packaging applications. Frontiers in Nutrition, 9:1004588.
Choudhary, S., Sharma, K., Mishra, P. K., Kumar, V. and Sharma, V. (2023). Development and characterization of biodegradable agarose/gumneem/nanohydroxyapatite/ polyoxyethylene sorbitan monooleate based edible bio-film for applications towards a circular economy. Environmental Technology & Innovation, 29:103023.
da Costa, R. D. S., Flôres, S. H., Brandelli, A., Vargas, C. G., Ritter, A. C., da Cruz Rodrigues, A. M. and da Silva, L. H. M. (2023). Development and properties of biodegradable film from peach palm (Bactris gasipaes). Food Research International, 173:113172.
de Ávila Gonçalves, S., Barbosa, M. H. R., Júnior, L. M., Alves, R. M. V. and Vieira, R. P. (2023). Poly (limonene): A novel renewable oligomeric antioxidant and UV-light blocking additive for chitosan-based films. Food Packaging and Shelf Life, 37:101085.
de Castro, L. L., Silva, L. G., Abreu, I. R., Cristiano, J. F., Rodrigues, S. C., Moreira Araújo, R. S. D. R., Folkersma, R., de Carvalho, L. H., Barbosa, R. and Alves, T. S. (2023). Biodegradable PBAT/PLA blend films incorporated with turmeric and cinnamomum powder: A potential alternative for active food packaging. Food Chemistry, 138146.
de Oliveira, T. V., de Freitas, P. A. V., Pola, C. C., da Silva, J. O. R., Diaz, L. D. A., Ferreira, S. O. and de FF Soares, N. (2020). Development and optimization of antimicrobial active films produced with a reinforced and compatibilized biodegradable polymers. Food Packaging and Shelf Life, 24:100459.
Determination of D-limonene content of volatile oil clathrates by HPLC. (2023). Academic Journal of Materials & Chemistry, 4:https://doi.org/10.25236/ajmc.2023.040202
Dey, D., Dharini, V., Selvam, S. P., Sadiku, E. R., Kumar, M. M., Jayaramudu, J. and Gupta, U. N. (2021). Physical, antifungal, and biodegradable properties of cellulose nanocrystals and chitosan nanoparticles for food packaging application. Materials Today: Proceedings, 38:860-869.
Erna, K. H., Felicia, W. X. L., Rovina, K., Vonnie, J. M. and Huda, N. (2022). Development of curcumin/rice starch films for sensitive detection of hypoxanthine in chicken and fish meat. Carbohydrate Polymer Technologies and Applications, 3:100189.
Fani, N., Enayati, M. H., Rostamabadi, H. and Falsafi, S. R. (2022). Encapsulation of bioactives within electrosprayed κ-carrageenan nanoparticles. Carbohydrate Polymers, 294:119761.
Gao, L., Liu, P., Liu, L., Li, S., Zhao, Y., Xie, J. and Xu, H. (2022). κ-carrageenan-based pH-sensing films incorporated with anthocyanins or/and betacyanins extracted from purple sweet potatoes and peels of dragon fruits. Process Biochemistry, 121:463-480.
Hasibuan, R. and Gultom, E. (2021). The effect of method, type of solvent and extraction time towards the yield of oil on essential oil extraction from lime peel (Citrus aurantifolia). In : IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1122:012108.
Januszewicz, K., Kazimierski, P., Kosakowski, W. and Lewandowski, W. M. (2020). Waste tyres pyrolysis for obtaining limonene. Materials, 13:1359.
Lan, W., Liang, X., Lan, W., Ahmed, S., Liu, Y. and Qin, W. (2019). Electrospun Polyvinyl Alcohol/d-Limonene Fibers Prepared by Ultrasonic Processing for Antibacterial Active Packaging Material. Molecules (Basel, Switzerland), 24:767.
Lee, W. H., Loo, C. Y., Bebawy, M., Luk, F., Mason, R. S. and Rohanizadeh, R. (2013). Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current neuropharmacology, 11:338-378.
Li, P. H. and Lu, W. C. (2016). Effects of storage conditions on the physical stability of D-limonene nanoemulsion. Food Hydrocolloids, 53:218-224.
Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X. and Jiang, S. (2018). Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids, 83:134-142.
Liu, Y., Liu, M., Zhang, L., Cao, W., Wang, H., Chen, G. and Wang, S. (2022). Preparation and properties of biodegradable films made of cationic potato-peel starch and loaded with curcumin. Food Hydrocolloids, 130:107690.
Liu, Y., Zhang, X., Li, C., Qin, Y., Xiao, L. and Liu, J. (2020). Comparison of the structural, physical and functional properties of κ-carrageenan films incorporated with pomegranate flesh and peelextracts. International journal of biological macromolecules, 147:1076-1088.
Lyn, F. H., Tan, C. P., Zawawi, R. M. and Hanani, Z. N. (2021). Physicochemical properties of chitosan/graphene oxide composite films and their effects on storage stability of palm-oil based margarine. Food Hydrocolloids, 117:106707.
Ma, S., Leong, H., He, L., Xiong, Z., Han, H., Jiang, L., Wang, Y., Hu, S., Su, S. and Xiang, J. (2020). Effects of pressure and residence time on limonene production in waste tires pyrolysis process. Journal of Analytical and Applied Pyrolysis, 151:104899.
Maroufi, L. Y., Ghorbani, M., Tabibiazar, M., Mohammadi, M. and Pezeshki, A. (2021). Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging. International Journal of Biological Macromolecules, 183:753-759.
Priyadarsini K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules (Basel, Switzerland), 19:20091-20112.
Rachtanapun, P., Klunklin, W., Jantrawut, P., Jantanasakulwong, K., Phimolsiripol, Y., Seesuriyachan, P., Leksawasdi, N., Chaiyaso, T., Ruksiriwanich, W., Phongthai, S. and Sommano, S. R. (2021). Characterization of chitosan film incorporated with curcumin extract. Polymers, 13:963.
Ramli, N. A., Adam, F., Mohd Amin, K. N., Nor, A. M. and Ries, M. E. (2023). Evaluation of mechanical and thermal properties of carrageenan/hydroxypropyl methyl cellulose hard capsule. The Canadian Journal of Chemical Engineering, 101:1219-1234.
Rhim, J. W., Kuzeci, S., Roy, S., Akti, N., Tav, C. and Yahsi, U. (2021). Effect of free volume on curcumin release from various polymer-based composite films analyzed using positron annihilation lifetime spectroscopy. Materials, 14:5679.
Roy, S., & Rhim, J. W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International journal of biological macromolecules, 148, 666-676.
Said, N. S. and Sarbon, N. M. (2023). Monitoring the freshness of fish fillets by colorimetric gelatin composite film incorporated with curcumin extract. Biocatalysis and Agricultural Biotechnology, 50:102722.
Schneider, C., Gordon, O. N., Edwards, R. L. and Luis, P. B. (2015). Degradation of Curcumin: From Mechanism to Biological Implications. Journal of agricultural and food chemistry, 63:7606-7614.
Shaikh, S., Yaqoob, M. and Aggarwal, P. (2021). An overview of biodegradable packaging in food industry. Current Research in Food Science, 4:503-520.
Shaw, D., Tripathi, A. D., Paul, V., Agarwal, A., Mishra, P. K. and Kumar, M. (2023). Valorization of essential oils from citrus peel powder using hydro-distillation. Sustainable Chemistry and Pharmacy, 32:101036.
Sree, G. V. and Nagaraaj, P. (2022). Enhancement of PVA packaging properties using calcined eggshell waste as filler and nanonutrient. Materials Chemistry and Physics, 291:126611.
Subbuvel, M. and Kavan, P. (2022). Preparation and characterization of polylactic acid/fenugreek essential oil/curcumin composite films for food packaging applications. International Journal of Biological Macromolecules, 194:470-483.
Varadaiah, Y. G. C., Sivanesan, S., Nayak, S. B. and Thirumalarao, K. R. (2022). Purine metabolites can indicate diabetes progression. Archives of Physiology and Biochemistry, 128:87-91.
Vonnie, J. M., Rovina, K., ‘Aqilah, N. M. N. and Felicia, X. W. L. (2023). Development and Characterization of Biosorbent Film from Eggshell/Orange Waste Enriched with Banana Starch. Polymers, 15:2414.
Xiang, H., Chen, X., Gao, X., Li, S., Zhu, Z., Guo, Z. and Cheng, S. (2023). Fabrication of ammonia and acetic acid-responsive intelligent films based on grape skin anthocyanin via adjusting the pH of film-forming solution. International Journal of Biological Macromolecules,128787.
Yildiz, E. (2022). Utilization Of Curcumin and Biodegradable Polymers In Intelligent And Active Food Packaging.
Yu, H. C., Li, C. Y., Du, M., Song, Y., Wu, Z. L. and Zheng, Q. (2019). Improved toughness and stability of κ-carrageenan/polyacrylamide double-network hydrogels by dual cross-linking of the first network. Macromolecules, 52:629-638.
Zhao, J., Wang, Y. and Liu, C. (2022). Film transparency and opacity measurements. Food Analytical Methods, 15:2840-2846.