Lignin biosynthesis genes (OsPAL and Os4CL3) sequencing of native upland rice varieties from Pala U Village, Thailand

Main Article Content

Laosutthipong, C.
Seritrakul, P.
Na Chiangmai, P.

Abstract

The results indicated that all seven OsPAL gene sequences showed higher similarity to Oryza sativa Japonica (99.4-100%) than Oryza sativa Indica (98.7-99.4%). For Os4CL3 gene, all seven sequences revealed 100% sequence identity to both Oryza sativa Japonica and Oryza sativa Indica. These lignin biosynthesis genes information from native upland rice varieties in Thailand were established as the basic information for further genetic conservation and breeding improvement.

Article Details

How to Cite
Laosutthipong, C., Seritrakul, P., & Na Chiangmai, P. (2019). Lignin biosynthesis genes (OsPAL and Os4CL3) sequencing of native upland rice varieties from Pala U Village, Thailand. International Journal of Agricultural Technology, 15(6), 947–958. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/8351
Section
Original Study

References

Coelho, G. R. C., Brondani, C., Hoffmann, L. V., Valdisser, P., Borba, T. C. O., Mendonca, J. A., Rodrigues, L. A. and de Menezes, I. P. P. (2017). Genetic diversity of high performance cultivars of upland and irrigated Brazilian rice. Genetics and Molecular Research, 16:1-11.

David, D., Pandey, S. and Nelson, A. (2010). Emerging trends and spatial patterns of rice production. In: Rice: Emerging Trends and Spatial Pattern of Rice Production, International Rice Research Institute, pp. 15-35.

Elkind, Y., Edwards, R., Mavandad, M., Hedrick, S. A., Ribak, O., Dixon, R. A. and Lamb, C. J. (1990). Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proceedings of the National Academy of Sciences of the United States of America, 87:9057-9061.

Gui, J., Shen, J. and Li, L. (2011). Functional characterization of evolutionarily divergent coumarate: coenzyme A ligases in rice. Plant Physiology, 157:574-586.

Gupta, P. C. and O'Toole, J. C. (1986). Characteristics of upland rices. In: Upland Rice: A Global Perspective, International Rice Research Institute, pp. 105-107.

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series, 41:95-98.

Hu, D., Liu, X. B., She, H. Z., Gao, Z., Ruan, R. W., Wu, D. Q. and Yi, Z. L. (2017). The lignin synthesis related genes and lodging resistance of Fagopyrum esculentum. Biologia Plantarum, 61:138-146.

Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.-H., Yu, J. Q. and Chen, Z. (2010). Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology, 153:1526-1538.

Islam, M. S., Peng, S., Visperas, R. M., Ereful, N., Bhuiya, M. S. U. and Julfiquar, A. J. F. c. r. (2007). Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Research, 101:240-248.

Karladee, D., Boonsit, P., Suriyong, S. and Jamjod, S. (2012). Population heterogeneity of upland rice in northern Thailand. Thai Journal of Agricultural Science, 45:99-104.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111-120.

Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33:1870-1874.

Liu, T., Li, R., Zhong, X., Jiang, M., Jin, X., Zhou, P., Liu, S., Sun, C. and Guo, W. (2018). Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252:144-154.

Liu, Q., Luo, L. and Zheng, L. (2018). Lignins: Biosynthesis and Biological Functions in Plants. International Journal of Molecular Sciences, 19:335.

Michael, S. (2017). THAILAND: Rice Production Rebounds Following El Nino. Retrieved from https://reliefweb.int/report/thailand/thailand-rice-production-rebounds-following-el-nino.

Minami, E. I., Ozeki, Y., Matsuoka, M., Koizuka, N. and Tanaka, Y. J. E. J. o. B. (1989). Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. European Journal of Biochemistry, 185:19-25.

Muhidin, Kadidaa, B., Sadimantar, G. R., Suaib and Safuan, L. O. (2017). Genetic diversity of local upland rice (Oryza sativa L.) genotypes based on agronomic traits and yield potential in north Buton, Indonesia. Asian Journal of Crop Science, 9:109-117.

Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. (2014). New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One, 9: e86870.

Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., Asano, K., Ochiai, Y., Ikeda, M. and Nishitani, R. (2010). New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nature Communications, 1:132.

Plaza-Wüthrich, S., Blösch, R., Rindisbacher, A., Cannarozzi, G. and Tadele, Z. (2016). Gibberellin deficiency confers both lodging and drought tolerance in small cereals. Frontiers in Plant Science, 7:643.

Raes, J., Rohde, A., Christensen, J. H., Van de Peer, Y. and Boerjan, W. (2003). Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology, 133:1051.

Saito, K., Asai, H., Zhao, D., Laborte, A. G. and Grenier, C. (2018). Progress in varietal improvement for increasing upland rice productivity in the tropics. Plant Production Science, 21:145-158.

Song, J. and Wang, Z. (2011). RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. Journal of Plant Research, 124:183-192.

Tanaka, K., Murata, K., Yamazaki, M., Onosato, K., Miyao, A. and Hirochika, H. (2003). Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiology, 133:73-83.

Tuhina-Khatun, M., Hanafi, M. M., Rafii Yusop, M., Wong, M. Y., Salleh, F. M. and Ferdous, J. (2015). Genetic variation, heritability, and diversity analysis of upland rice (Oryza sativa L.) genotypes based on quantitative traits. BioMed Research International, 2015:290861.

Vanlalsanga and Singh, Y. T. (2019). Genetic diversity and population structure in upland rice (Oryza sativa L.) of Mizoram, north east India as revealed by morphological, biochemical and molecular markers. Biochemical Genetics, 57:421-442.

Vechpong, T., Chaingmai, P. N. and Pompranee, P. (2015). Participation of community in knowledge management: case study of Paganyaw way of upland rice cultivation in Prachuap Khiri Khan. International Journal of Behavioral Science, 10:13-20.

Wagner, A., Donaldson, L., Kim, H., Phillips, L., Flint, H., Steward, D., Torr, K., Koch, G., Schmitt, U. and Ralph, J. (2009). Suppression of 4-Coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiology, 149:370-383.

Wu, L., Zhang, W., Ding, Y., Zhang, J., Cambula, E. D., Weng, F., Liu, Z., Ding, C., Tang, S., Chen, L., Wang, S. and Li, G. (2017). Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.). Frontiers in Plant Science, 8:1-16.

Yoon, J., Choi, H. and An, G. (2015). Roles of lignin biosynthesis and regulatory genes in plant development. Journal of Integrative Plant Biology, 57:902-912.

Zhang, W. J., Wu, L. M., Ding, Y. F., Fei, W., Wu, X. R., Li, G. H., Liu, Z. H., She, T., Ding, C. Q. and Wang, S. H. (2016). Top-dressing nitrogen fertilizer rate contributes to decrease culm physical strength by reducing structural carbohydrate content in japonica rice. Journal of Integrative Agriculture, 15:992-1004.