Compensatory growth response with switching dietary protein levels in common lowland frog, Rana rugulosa

Main Article Content

Klahan, R.
Kaithong, S.
Ounsawat, S.

Abstract

The results showed outstanding highest growth performance and feed utilization at the end of the trial, especially yield and economic value for T5 (P<0.05). The survival rate of T3 was the lowest (82.50%) while the other groups were in the range of 92.50 – 100.00% (P<0.05). The carcass composition in terms of edible flesh and flesh quality in terms of percentage of protein was highest in T1 and T5 which were 31.91 – 32.57 % and 73.50 – 73.83 %, respectively (P<0.05). Therefore, feeding frogs for the first month, catfish feed for the second month, and frog feed for the third month revealed suitable feeding regime by the response on compensation, promoting growth performance and feed utilization, and provided the highest yield lowest feed cost

Article Details

How to Cite
Klahan, R., Kaithong, S., & Ounsawat, S. (2022). Compensatory growth response with switching dietary protein levels in common lowland frog, Rana rugulosa. International Journal of Agricultural Technology, 18(4), 1587–1600. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/8553
Section
Original Study

References

A. O. A. C. (2000). Official methods of analysis. Virginia Association of Official Analytical Chemist, Inc.

Abolfathi, M., Hajimoradloo, A., Ghorbani, R. and Zamani, A. (2012). Effect of starvation and re-feeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comparative Biochemistry & Physiology, 161:166-173.

Álvarez, D. (2011). Effects of Compensatory Growth on Fish Behavior. Encyclopedia of Fish Physiology: From Genome to Environment, 1:752-757.

Albalat, A., Gómez-Requeni, P., Rojas, P., Médale, F., Kaushik, S., Vianen, G. J., Van den Thillart, G., Gutiérrez, J., Pérez-Sánchez, J. and Navarro, I. (2005). Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289:259 -265.

Ali, M., Nicieza, A. and Wootton, R. J. (2003). Compensatory growth in fishes: a response to growth depression. Fish and Fisheries, 4:147-190.

Amin, A. K. M. R., Bapary, M. A. J., Islam, M. S., Shahjahan, M. and Hossain, M. A. R. (2015). The Impacts of Compensatory Growth on Food Intake, Growth Rate and Efficiency of Feed Utilization in Thai Pangas (Pangasius hypophthalmus). Pakistan Journal of Biological Sciences, 8:766-770.

Bezerra, R. S., Lins, E. J. F., Alencar, R. B., Paiva, P. M. G., Chaves, M. E. C., Luana, C. B. B. and Carvalho, L. B. Jr. (2005). Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochemistry, 40:1829-1834.

Capellán, E. and Nicieza, A. G. (2007). Non-Equivalence of Growth Arrest Induced by Predation Risk or Food Limitation: Context-Dependent Compensatory Growth in Anuran Tadpoles. Journal of Animal Ecology, 76:1026-1035.

Castell, J. D. and Tiews, K. (1980). Report on the EIFAC, IUNS and ICES. Working group on the standardization of methodology in fish nutrition research, Hamburg, Federal Republic of Germany.

Das, A. P. U., Tanmoy, G. C., Sagar and C. M. (2012). Compensatory Growth in Fishes A Boon To Aquaculture. Aquaculture Europe, 37:20-23.

Gabriel, N. N., Omoregie, E., Martin, T., Kukuri, L. and Shilombwelwa, L. (2018). Compensatory Growth Response in Oreochromis mossambicus Submitted to Short-Term Cycles of Feed Deprivation and Refeeding. Turkish Journal of Fisheries and Aquatic Sciences, 18:161-166.

Gimenez, A. V. F., Fernandez, I., Preciado, R. M., Oliva, M., Tova, D. and Nolasco, H. (1999). The activityof digestive enzyme during the molting stage of the arched swimming Callinectes Arcautus orday, 1863. (Crustacea : decapoda: portunidae). Bulletin of Marine Science, 65:1-9.

Gisbert, E., Gimenez, G., Fernandez, I., Kotzamanis, Y. and Estevez, A. (2009). Development of digestive enzymes in common dentex, Dentex dentex during early ontogeny. Aquaculture, 287:381-387.

Halver, J. E. and Hardy, R. W. (2002). Fish Nutrition, third ed. Academic Press, New York.

Hector, K. L., Bishop, P. J. and Nakagawa, S. (2011). Consequences of compensatory growth in an amphibian. Journal of Zoology, 286:93-101.

Ishida, A., Kyoya, T., Nakashima, K. and Katsumata, M. (2012). Nitrogen balance during compensatory growth when changing the levels of dietary lysine from deficiency to sufficiency in growing pigs. Animal science journal, 83:743-749.

Jindal, M, Yadava, N, Jain, K and Gupta, R. (2010). Effect of Two Dietary Protein Levels on Body Weight and Composition in Channa punctatus (Bloch.) Fingerlings. Turkish Journal of Fisheries and Aquatic Sciences, 10:203-208.

Jiwyam, W. (2010). Growth and compensatory growth of juvenile Pangasius bocourti Sauvage, 1880. Aquaculture, 306:393-397.

Klahan, R., Areechon, N., Yoonpundh, R. and Engkagul, A. (2009). Characterization and activity of digestive enzymes in different sizes of Nile tilapia (Oreochromis niloticus L.). Agriculture and Natural Resources, 43:143-15.

Klahan. R., Youngsoi, B. and Pimpimol. T. (2020). The evaluation of growth performance, feed utilization, and flesh quality of Nile tilapia (Oreochromis Niloticus) fed with different feeding regime. 7th International Conference on Fisheries and Aquaculture 2020 (ICFA 2020), 81 p.

Kumar, P., Jain, K. K., Munilkumar, S., Sahu, P. N. and Pal, K. A. (2013). Effect of feeding normal and low protein diet alternately to Labeo rohita fingerlings on growth performance and biochemical composition. Int. J. Science & Knowledge, 2:3-13.

Kumkhong, S., Marandel, L. Plagnes-Juan, E., Veron, V., Panserat, S. and Boonanuntanasarn, S. (2020). Early feeding with hyperglucidic diet during fry stage exerts long-term positive effects on nutrient metabolism and growth performance in adult tilapia (Oreochromis niloticus). Journal of Nutritional Science, 9:1-14.

Lingam, S. S., Paramita, B. S., Narinder, K. C., Kurcheti, P. Muralidhar, A. P., Karthireddy, S. and Martin, X. K. A. (2019). Duration of stunting impacts compensatory growth and carcass quality of farmed milkfish, Chanos chanos (Forsskal, 1775) under field conditions. Scientific Reports, 9:16747.

Lowry, C. O., Rosebrough, N., Farr, A. and Randall, R. (1951). Protein measurement with the Folin phenol reagent. J biol Chem, 193: 265-75.

MacKenzie, D. S. (1988). Thyroid function in red drum. Contrib. Mar. Sci. Supp, 30: 139-146.

Mingarro, M., de Celis, S. V. R., Astola, A., Pendón, C., Valdivia, M. M. and Pérez-Sánchez, J. (2002). Endocrine mediators of seasonal growth in gilthead sea bream (Sparus aurata): the growth hormone and somatolactin paradigm. General and comparative endocrinology, 128: 102-111.

Näslund, J., Pauliny, A., Blomqvist, D. and Johnsson, J. I. (2015). Telomere dynamics in wild brown trout: effects of compensatory growth and early growth investment. Oecologia, 177:1221-1230.

Persson, L. and De Roos, A. M. (2006). Food‐dependent individual growth and population dynamics in fishes. Journal of Fish Biology, 69: 1-20.

Reinecke, M., Björnsson, B. T., Dickhoff, W. W., McCormick, S. D., Navarro, I., Power, D. M. and Gutiérrez, J. (2005). Growth hormone and insulin-like growth factors in fish: Where we are and where to go. General and Comparative Endocrinology, 142:20-24.

Rodjaroen, S., Thongprajukaew, K., Jaihao, P., Saekhow S. and Nuntapong, N. (2020). Mixed feeding schedules switching between dietary crude protein levels for mono-sex male Nile tilapia (Oreochromis niloticus). Aquaculture Reports, 18:1-8.

Sardar, P., Sinha, A. and Datta, S. (2011). Effect of mixed feeding schedules with varying dietary protein levels on the growth performances of common carp (Cyprinus carpio Linn.). Indian Journal of Animal Sciences, 81:537-542.

Sheridan, M. A. (1986). Effects of thyroxin, cortisol, growth hormone, and prolactin on lipid metabolism of coho salmon, Oncorhynchus kisutch, during smoltification. General and comparative endocrinology, 64: 220-238.

Somsueb, P. and Boonyaratpalin, M. (2002). Optimum protein and energy levels for the Thai native frog, Rana rugulosa Weigmann. Aquaculture research, 32:33 -38.

Therkildsen, M., Vestergaard, M., Busk, H., Jensen, M.T., Riis, B., Karlsson, A. H., Kristensen, L., Ertbjerg, P. and Oksbjerg, N. (2004). Compensatory growth in slaughter pigs in vitro muscle protein turnover at slaughter, circulating IGF-I, performance, and carcass quality. Livestock Production Science, 88:63-75.

Urbinati, E. C., Sarmiento, S. J. and Takahashic, L. S. (2014). Short-term cycles of feed deprivation and refeeding promote full compensatory growth in the Amazon fish matrinxã (Brycon amazonicus). Aquaculture, 433:430-433.

Vonesh, R. J. and Bolker, M. B. (2005). Compensatory larval responses shift trade-offs associated with predator-induced hatching plasticity. Ecology, 86:1580-1591.

Wang, Y. Yibo, C., Yunxia, Y. and Fasheng, C. (2000). Compensatory growth in hybrid tilapia, Oreochromis mossambicus X O. niloticus, reared in seawater. Aquaculture, 189:101-108.

Wilson, R. P. (2002). Amino Acids and Proteins. Fish Nutrition. In : Fish nutrition. Halver, J. E., Hardy, R. W., third ed. Academic Press, New York, 143-179.

Won, E. T. and Borski, R. J. (2013). Endocrine regulation of compensatory growth in fish. Front Endocrinol, 4:1-13.

Xu, C., Xu, W. and Lu, H. (2014). Compensatory growth responses to food restriction in the Chinese three-keeled pond turtle, Chinemys reevesii. Springer Plus, 3:687.

Ziheng, F., Xiangli, T. and Shuanglin, D. (2017). Effects of Starving and Refeeding Strategies on the Growth Performance and Physiological Characteristics of the Juvenile Tongue Sole (Cynoglossus semilaevis). Journal of Ocean University of China, 16:517-524.