Determination of pregnancy associated - glycoproteins (PAGs) During and post pregnancy in riverine buffaloes (Bubalus bubalis Linn.)

Main Article Content

Rigos L. M.
Atabay, E. C.
Atabay, E. P.
Apolinario, J. P. R.

Abstract

Through pregnancy-associated glycoprotein assay, an overall conception rate of 54. 17% at days 25 and 30 post fixed-time artificial insemination (FTAI) was observed in the study. The pregnancy of the riverine buffaloes (n=13) was confirmed through transrectal ultrasonography (TRUS) at day 40, showing the presence of an amniotic vesicle and an embryo with a beating heart. The mean plasma level of pregnancy-associated glycoproteins (PAGs) of the pregnant buffaloes (n=11) were found at a high level as early as days 25, 30, and 40 (1.21 ± 0.20 ng/ml, 12.11 ± 1.67, and 28.81 ± 2.57 ng/ml) and observed to have increasing trend/pattern with the progression of pregnancy until day 300 (114.01 ± 10.05). Two of the animals that were confirmed pregnant at day 40 post artificial insemination (AI) via TRUS undergone early pregnancy loss. While the non-pregnant buffalo’s plasma PAGs remained at a very low level on day 25 (0.17 ± 0. 04 ng/ml) to day 40 (0.06 ± 0.02 ng/ml) and further confirmed the non-pregnancy via TRUS. Two waves of peak increase in the concentration of PAGs were found during the gestation period of the riverine buffaloes. The 1st peak was observed during the 1st trimester (day 60) and the 2nd peak was during the last trimester (day 270) of gestation. Generally, the findings on PAGs at early and throughout the gestation period of riverine buffaloes appeared higher than those reported in other studies. Postpartum residual clearance of PAGs concentration in the maternal circulation of the buffaloes was found to be slowly decreasing from 114.33 ± 13.75ng/ml at week 1 to nadir at week 10 with a plasma level of 0.11 ± 0.01 ng/ml.

Article Details

How to Cite
Rigos L. M., Atabay, E. C., Atabay, E. P., & Apolinario, J. P. R. (2022). Determination of pregnancy associated - glycoproteins (PAGs) During and post pregnancy in riverine buffaloes (Bubalus bubalis Linn.). International Journal of Agricultural Technology, 18(4), 1753–1766. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/8581
Section
Original Study

References

Adeyinka, F. D., Laven, R. A., Lawrence, K. E., van den Bosch, M., Blankenvoorde, G. and Parkinson, T. J. (2014). Association between placentome size, measured using transrectal ultrasonography, and gestational age in cattle. New Zealand Veterinary Journal, 62:51-56.

Atabay, E. P., Atabay, E. C., Maylem, E. R. S., Flores, E. B., Tilwani, R. C. and Sarabia, A. S. (2017). Progesterone based Ovulation Synchronization with human Chorionic Gonadotrophin Increased Fertility Rates in Dairy Buffaloes. Buffalo Bulletin (in press).

Balhara, A. K., Gupta, M., Singh, S., Mohanty A. K. and Singh, I. (2013). Early Pregnancy Diagnosis in Bovines: Current Status and Future Directions. The Scientific World Journal. 9:85-95.

Barbato, O., Menchetti, L., Sousa, N. M., Malfatti, A., Brecchia, G., Canali, C. and Barile, V. L. (2017). Pregnancy-associated glycoproteins (PAGs) concentrations in water buffaloes (Bubalus bubalis) during gestation and the postpartum period. Theriogenology, 97:73-77.

Batalha, E. S., Sulon, J., Figueiredo, J. R., Beckers, J. F., Martins, G. A. and. Silva, L. D. M. (2001). Relationship between maternal concentrations of caprine pregnancy-associated glycoprotein in Alpine goats and the number of fetuses using a homologous radioimmunoassay. Small Ruminant Research, 42:105-109.

Breukelman, S. P., Szenci, O, and Beckers. J. F., Kindahl, H., Mulder, E. J. H., Jonker, Van Der Weijden, B., Revy, D., Pogany, K., Sulo, J., Nemedi, I. and Taverne, M. A. M. (2005). Ultrasonographic appearance of the conceptus, fetal heart rate and profiles of pregnancy-associated glycoproteins (PAG) and prostaglandin F2a-metabolite after induction of fetal death with aglepristone during early gestation in cattle. Theriogenology, 64:947-933.

Commun, L., Velek, K., Barbry, J. B., Pun, S., Rice, A., Mestek, A. and Leterme, S. (2016). Detection of pregnancy-associated glycoproteins in milk and blood as a test for early pregnancy in dairy cows. Journal of Veterinary Diagnostic Investigation, 28:207-213.

De Sousa, N. M., Zongo, M., Pitala, W., Boly, H., Sawadogo, L., Sanon, M. and Beckers, J. F. (2003). Pregnancy-associated glycoprotein concentrations during pregnancy and the postpartum period in Azawak Zebu cattle. Theriogenology, 59:1131-1142.

De Sousa, N. M., Ayad, A. Beckers, J. F., and Gajeski, Z. (1999). Pregnancy-associated glycoproteins (PAGs) as pregnancy markers in the ruminants. Journal of Physiology and Pharmacology, 57:153-171.

Dobson, H., Rowan, T. G. M., Kippax, I. S. and Humblot, P. (1993). Assessment of fetal number and fetal placental viability throughout pregnancy in cattle. Theriogenology, 40:411-425.

El-Battawy, K. A., Sousa, N. M., Szenci, O. and Beckers. J. F. (2009). Pregnancy – associated glycoprotein profile during the first trimester of pregnancy in Egyptian buffalo cows. Reproduction in Domestic Animals, 44:161-166.

El Amiri, B., Sousa, N. M., Alvarez Oxiley, A., Hadarbach, D. and Beckers, J. F. (2015). Pregnancy-associated glycoprotein (PAG) concentration in plasma and milk samples for early pregnancy diagnosis in Lacaune dairy sheep. Research in Veterinary Science, 99:30-36.

Franco, G. A., Peres, R. F. G., Martins, C. F. G., Reese, S. T., Vasconcelos, J. L. M. and Pohler, K. G. (2018). Sire contribution to pregnancy loss and pregnancy-associated glycoprotein production in nelore cows. Journal of Animal Science, 96:632-640.

Friedrich, M. and Holtz, W. (2010). Establishment of an ELISA for measuring bovine pregnancy-associated glycoprotein in serum or milk and its application for early pregnancy detection. Reproduction in Domestic Animals, 45:142-146.

Garbayo, J., Green, M. J. A., Manikkam, M., Beckers, J. F., Kiesling, D. O Ealy, A. D. and Roberts, R. M. (2000). Caprine pregnancy-associated glycoproteins (PAG): Their cloning, expression, and evolutionary relationship to other PAG. Molecular Reproduction and Development. 57:311-322.

Giordano, J. O., Guenther, J. N., Lopes, G. and Fricke, P. M. (2012). Changes in serum pregnancy-associated glycoprotein, pregnancy-specific protein B, and progesterone concentrations before and after induction of pregnancy loss in lactating dairy cows. Journal of Dairy Science, 95:683-697.

González, F., Sulon, J., Garbayo, J. M., Batista. M., Cabrera, F., Calero, P.O., Gracia, A., Beckers, J. S., (2000). Early pregnancy diagnosis ingoats by determination of pregnancyassociated glycoprotein concentrations inplasma samples. Theriogenology 52:717-725.

Green, J. A., Parks, T. E., Avalle, M. P., Telugu, B. P., McLain, A. L., Peterson, A. McMillan, J W. Mathialagan, N., Hook, R. R., Xie, S. and Roberts. R. M. (2005). The establishment of an ELISA for the detection of pregnancy-associated glycoproteins (PAGs) in the serum of pregnant cows and heifers. Theriogenology, 63:1481-1503.

Jerome, A. (2012). An overview on Pregnancy Associated Glycoproteins in Cattle and Buffalo. Journal of Advanced Veterinary Research, 2:50-58.

Karen, A., Beckers, J. F., Sulon , J., de Sousa , N. M., Szabados, J., Reczigel, K and Szenci, O. (2015). Early pregnancy diagnosis in sheep by progesterone and pregnancy-associated glycoprotein tests. Theriogenology. 59:1941-8.

Karen, A., Darwish, S., Ramaun, A., Tawfeek, K., De Sausa, N. M., and Beckers, J. F. (2007). Accuracy of ultrasonography and pregnancy-associated glycoprotein test for pregnancy diagnosis in buffaloes. Theriogenology, 68:1150-1155.

Klisch, K., De Sousa, N. M., Beckers, J. F., Leiser, R. and Pich, A. (2005). Trophoblast giant cells at mid-pregnancy are major products of bovine binucleate try. Molecular Reproduction and Development, 71:453-460.

Ledezma-Torres R. A, Beckers, J. F. and Holtz, W. (2006). Assessment of plasma profile of pregnancyassociated glycoprotein (PAG) in sheep with a heterologous (anti-caPAG55+59) RIA and its potential for diagnosing pregnancy. Theriogenology 66:906-912.

Lopez-Gatius F., Hunter, R. H. F., Garbayo, J. M., Santolaria, P., Yaniz, J., Serrano, B., Ayad, A., Sousa, N. M. and Beckers, J. F. (2007). Plasma concentrations of pregnancy-associated glycoprotein- 1 (PAG-1) in high producing dairy cows suffering early fetal loss during the warm season. Theriogenology, 67:1324-1330.

Lucy, M. C., Mc Dougall, S. and Nation, D. P. (2004). The use of hormonal treatments to improve the reproductive performance of lactating dairy cows in feedlot or pasture- based management systems. Animal Reproduction Science, 82:495-512.

Mehrajuddin, N., Patel, D. M. and Derashri, H. J. (2013). Early pregnancy diagnosis by transrectal ultrasonography in Mehsana buffaloes (Bubalus bubalis). Buffalo Bulletin, 32:120-125.

Michelizzi, U. N., Dodson, M. Y., Pan, Z., Amaral, M. F., Michal, J., McLean, D. J., Womack, J. E. and Jang, Z. (2010). Water buffalo genome science comes to age. Int J Biol Sci 6:336- 349.

Pohler, K. G., Pereira, M. H. C., Lopes, F. R., Lawrence, J. C., Keisler, D. H., Smith, M. F. and Green, J. A. (2013). Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds. Journal of Dairy Science, 99:1584-1594.

Prvanovic, N. A., Tomaskovic, J. Grizelj, Kocila, P. and Samardzija, M. (2009). Monitoring of early pregnancy and early embryonic mortality by ultrasound and determination of pregnancy-associated glycoproteins and progesterone in cows. Veterinarski Archiv, 3:259-267.

Ranjan, R. and Singh, O. (2013). Gross Morphological Studies on Placentomes of Buffalo (Bubalus, bubalis). The Indian Veterinary Journal, 90:28-30.

Rao, T. K., Kumar, S., Kumar, N. P., Chaurasia, S. and Patel, N. B. (2013) Heat detection techniques in cattle and buffalo. Veterinary World, 6:363-369.

Reese, S. T., Pereira, M. C, Vasconcelos, J. L., Smith, M. F., Green, J. A. and Geary, T. W. (2017). Pregnancy diagnosis in cattle using pregnancy-associated glycoprotein concentration in circulation at day 24 of gestation. Theriogenology, 106:178-185.

Reynolds, L., Millaway, D., Kirsch, J., Infeld, J. and Redmer, D. (1990). Growth and in-vitro metabolism of placental tissues of cows from day 100 to day 250 of gestation. Journal of Reproduction and Fertility, 89:213-222.

Shahin, M. (2012). Pregnancy-associated glycoprotein (PAG) profiles in cows and goats and attempts to measure PAG in milk. (Ph.D. Thesis). zur Erlangung des Doktorgrades der Fakultät für Agrarwissenschaften der Georg Universität Göttingen.

Schmidt, D., Gerber, J. T. and Soley, T. A. A. (2006). Histo-morphology of the Uterus and Early Placenta of the African Buffalo. Placenta, 27:1.

Thompson, I. M., Cerri, R. L. A., Kim, I. H., Green, J. A., Santos, J. E. P. and Thatcher, W. W. (2010). Effects of resynchronization programs on pregnancy per artificial insemination, progesterone, and pregnancy-associated glycoproteins in plasma of lactating dairy cows. Journal of Dairy Science, 93(9), 4006–4018. https://doi.org/10.3168/jds.2009-2941

Vandaele L., Verberckmoes, S., El Amiri, B., Sulon, J., Duchateau, L., Van Soom, A., Beckers, J. F. and De Kruif, A. (2005). Use of homologous radioimmunoassay (RIA) to evaluate the effect of maternal and fetal parameters on pregnancy-associated glycoprotein (PAG) concentrations in sheep. Theriogenology, 63:1914-1924.

Wallace, R. M., Pohler, K. G., Smith, M. F. and Green, J. A. (2015). Placental PAGs: gene origins, expression patterns, and use as markers of pregnancy. Reproduction, 149:R115-126.

Wooding, F. B. (1983). Frequency and localization of binucleate cells in the placentomes of ruminants. Placenta, 4:527-539.

Zoli, A. P., Guilbault, L. A. Delahaut, P., Ortiz, W., Beckers, B. and Jean-Fran. (1992). Radioimmunoassay of a bovine pregnancy- associated glycoprotein in serum: its application for pregnancy diagnosis in serum. Biology of Reproduction, 46:83-92