Advances in understanding plant–microbe symbiosis in stressful environments
Main Article Content
Abstract
In recent years, the interplay between plants and microbes has gained significant attention in understanding resilience mechanisms under stressful environmental conditions. Plant-microbe symbioses, including mycorrhizal associations and beneficial bacteria interactions, play crucial roles in enhancing plant tolerance to abiotic stresses such as drought, salinity, and nutrient deficiency. Advances in molecular and genomic technologies have facilitated the exploration of these complex interactions, revealing the underlying genetic and biochemical pathways that mediate plant responses to stress. Studies have demonstrated that beneficial microbes can modulate plant hormone levels, activate stress-responsive genes, and enhance nutrient uptake, thereby improving growth and productivity in adverse conditions. Furthermore, the concept of the phytomicrobiome emphasizes the collective influence of microbial communities associated with plants, highlighting their dynamic and interactive nature. This review synthesizes recent findings on the mechanisms of plant-microbe interactions and their implications for agricultural sustainability in the face of climate change. By leveraging these insights, researchers aim to develop innovative strategies for enhancing crop resilience and productivity, ultimately contributing to food security. The integration of microbiome management in agricultural practices holds promise for improving crop performance under varying environmental stressors, paving the way for a new paradigm in sustainable agriculture.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Acuña-Rodríguez, I. S., Hansen, H., Gallardo-Cerda, J., Atala, C. and Molina-Montenegro, M. A. (2019). Antarctic extremophiles: biotechnological alternative to crop productivity in saline soils. Frontiers in Bioengineering and Biotechnology, 7:22.
Ali, S., Tyagi, A., Mir, R. A., Rather, I. A., Anwar, Y. and Mahmoudi, H. (2023). Plant beneficial microbiome – a boon for improving multiple stress tolerance in plants. Frontiers in Plant Science, 14:1266182.
Bapaume, L. and Reinhardt, D. (2012). How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. Frontiers in Plant Science, 3:223.
Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y. and Dhiba, D. (2018). Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers in Microbiology, 9:1606.
Beck, A. E., Kleiner, M. and Garrell, A. K. (2022). Elucidating plant–microbe–environment interactions through omics-enabled metabolic modelling using synthetic communities. Frontiers in Plant Science, 13:910377.
Carper, D. L., Appidi, M. R., Mudbhari, S., Shrestha, H. K., Hettich, R. L. and Abraham, P. E. (2022). The promises, challenges, and opportunities of omics for studying the plant holobiont. Microorganisms, 10:2013.
Dastogeer, K. M. G., Zahan, M. I., Rhaman, M. S., Sarker, M. S. A. and Chakraborty, A. (2022). Microbe-mediated thermotolerance in plants and pertinent mechanisms – a meta-analysis and review. Frontiers in Microbiology, 13:833566.
El Amrani, B. (2022). Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem. Vavilovskii Zhurnal Genetiki i Selektsii, 26:442-448.
Foyer, C. H., Nguyen, H. T. and Lam, H. M. (2019). Legumes – the art and science of environmentally sustainable agriculture. Plant, Cell & Environment, 42:1-5.
Hacquard, S., Kracher, B., Hiruma, K., Münch, P. C., Garrido-Oter, R., Thon, M. R., Weimann, A., Damm, U., Dallery, J. F., Hainaut, M., Henrissat, B., Lespinet, O., Sacristán, S., Ver Loren van Themaat, E., Kemen, E., McHardy, A. C., Schulze-Lefert, P. and O’Connell, R. J. (2016). Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communications, 7:11362.
Hartman, K. and Tringe, S. G. (2019). Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochemical Journal, 476:2705-2724.
Imam, J., Singh, P. K. and Shukla, P. (2016). Plant microbe interactions in post genomic era: perspectives and applications. Frontiers in Microbiology, 7:1488.
Jones, P., Garcia, B. J., Furches, A., Tuskan, G. A. and Jacobson, D. (2019). Plant host-associated mechanisms for microbial selection. Frontiers in Plant Science, 10:862.
Khan, A. L. (2023). The phytomicrobiome: solving plant stress tolerance under climate change. Frontiers in Plant Science, 14:1219366.
Lareen, A., Burton, F. and Schäfer, P. (2016). Plant root–microbe communication in shaping root microbiomes. Plant Molecular Biology, 90:575-587.
Lino-Neto, T. and Baptista, P. (2022). Distinguishing allies from enemies – a way for a new green revolution. Microorganisms, 10:1048.
Liu, A., Ku, Y. S., Contador, C. A. and Lam, H. M. (2020). The impacts of domestication and agricultural practices on legume nutrient acquisition through symbiosis with rhizobia and arbuscular mycorrhizal fungi. Frontiers in Genetics, 11:583954.
Matthews, A., Pierce, S., Hipperson, H. and Raymond, B. (2019). Rhizobacterial community assembly patterns vary between crop species. Frontiers in Microbiology, 10:581.
Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K. and Minhas, P. S. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in Plant Science, 8:172.
Meinzer, M., Ahmad, N. and Nielsen, B. L. (2023). Halophilic plant-associated bacteria with plant-growth-promoting potential. Microorganisms, 11:2910.
Mukhopadhyay, M., Mukherjee, A., Ganguli, S., Chakraborti, A., Roy, S., Choudhury, S. S., Subramaniyan, V., Kumarasamy, V., Sayed, A. A., El-Demerdash, F. M., Almutairi, M. H., Şuţan, A., Dhara, B. and Mitra, A. K. (2023). Marvels of Bacilli in soil amendment for plant-growth promotion toward sustainable development having futuristic socio-economic implications. Frontiers in Microbiology, 14:1293302.
Otlewska, A., Migliore, M., Dybka-Stępień, K., Manfredini, A., Struszczyk-Świta, K., Napoli, R., Białkowska, A., Canfora, L. and Pinzari, F. (2020). When salt meddles between plant, soil, and microorganisms. Frontiers in Plant Science, 11:553087.
Pan, Y., Kang, P., Tan, M., Hu, J., Zhang, Y., Zhang, J., Song, N. and Li, X. (2022). Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to K-strategists bacterial community under salt stress. Frontiers in Plant Science, 13:997292.
Petrushin, I. S., Vasilev, I. A. and Markova, Y. A. (2023). Drought tolerance of legumes: physiology and the role of the microbiome. Current Issues in Molecular Biology, 45:6311-6324.
Piasecka, A., Kachlicki, P. and Stobiecki, M. (2019). Analytical methods for detection of plant metabolomes changes in response to biotic and abiotic stresses. International Journal of Molecular Sciences, 20:379.
Poudel, M., Mendes, R., Costa, L. A. S., Bueno, C.G., Meng, Y., Folimonova, S. Y., Garrett, K. A. and Martins, S. J. (2021). The role of plant-associated bacteria, fungi, and viruses in drought stress mitigation. Frontiers in Microbiology, 12:743512.
Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. and Moënne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321:341-361.
Ramoneda, J., Le Roux, J., Frossard, E., Bester, C., Oettlé, N., Frey, B. and Gamper, H. A. (2019). Insights from invasion ecology: can consideration of eco-evolutionary experience promote benefits from root mutualisms in plant production? AoB Plants, 11:plz060.
Rizaludin, M. S., Stopnisek, N., Raaijmakers, J. M. and Garbeva, P. (2021). The chemistry of stress: understanding the "cry for help" of plant roots. Metabolites, 11:357.
Rüger, L., Feng, K., Dumack, K., Freudenthal, J., Chen, Y., Sun, R., Wilson, M., Yu, P., Sun, B., Deng, Y., Hochholdinger, F., Vetterlein, D. and Bonkowski, M. (2021). Assembly patterns of the rhizosphere microbiome along the longitudinal root axis of maize (Zea mays L.). Frontiers in Microbiology, 12:614501.
Rui, W., Mao, Z. and Li, Z. (2022). The roles of phosphorus and nitrogen nutrient transporters in the arbuscular mycorrhizal symbiosis. International Journal of Molecular Sciences, 23:11027.
Santisree, P., Hemalatha, S., Sriramya, G., Sharma, K. K. and Bhatnagar-Mathur, P. (2019). Nitric oxide as a signal in inducing secondary metabolites during plant stress. Plant Biotechnology Reports, 13:421-435.
Shree, B., Jayakrishnan, U. and Bhushan, S. (2022). Impact of key parameters involved with plant–microbe interaction in context to global climate change. Frontiers in Microbiology, 13:1008451.
Smith, D. L., Praslickova, D. and Ilangumaran, G. (2015). Inter-organismal signaling and management of the phytomicrobiome. Frontiers in Plant Science, 6:722.
Veach, A. M., Chen, H., Yang, Z. K., Labbe, A. D., Engle, N. L., Tschaplinski, T. J., Schadt, C. W. and Cregger, M. A. (2020). Plant hosts modify belowground microbial community response to extreme drought. mSystems, 5:e00092-20.
Volpe, V., Chitarra, W., Cascone, P., Volpe, M. G., Bartolini, P., Moneti, G., Pieraccini, G., Di Serio, C., Maserti, B., Guerrieri, E. and Balestrini, R. (2018). The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. Frontiers in Plant Science, 9:1480.
Wang, Q., Liu, M., Wang, Z., Li, J., Liu, K. and Huang, D. (2024). The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Frontiers in Microbiology, 14:1323881.
Wang, Z. and Song, Y. (2022). Toward understanding the genetic bases underlying plant-mediated "cry for help" to the microbiota. iMeta, 1:e8.
York, L. M., Carminati, A., Mooney, S. J., Ritz, K. and Bennett, M. J. (2016). The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 67:3629-3643.