Potential effect of root-associated bacteria from Origanum vulgare L. on wheat and tomato seedlings

Main Article Content

Benhalima, L.
Amri, S.
Belhaoues, S.
Nahal, I.
Melki, M.
Bensouilah, M.

Abstract

Medicinal plant root bacteria present multifunctionality and can act as important stimulator agents for their host plant. Eight strains recovered from the roots of Origanum vulgare L. medicinal plants growing in Ben Djerrah, Guelma, Algeria, were classified into the genera Bacillus, Burkholderia, Rhodococcus, and Pseudomonas. The functional traits for amylase, lipase, and indole-3-acetic acid (IAA) production were detectedلin all strains, while 75% were positive for hydrolytic proteases. Particular emphasis is placed on strains EpB1 and EdB8, which were efficient enzyme producers and exhibited the highest IAA production (114.56±0.27 μg/ml and 114.06±0.44 μg/ml, respectively). There was a significant enhancement in the growth of wheat and tomato seeds pretreated with the isolates Bacillus cereus EpB1, Pseudomonas luteola EdB6, and Bacillus subtilis EdB8. They enhanced the seed germination rate, vigor index, and the shoot and root lengths and biomass of seedlings in comparison to the control. Accordingly, the epiphytic strain EpB1 and the endophytic strains EdB8 and EdB6 from Origanum vulgare L. roots could potentially be used as biofertilizers to manage wheat and tomato cultivation.

Article Details

How to Cite
Benhalima, L., Amri, S., Belhaoues, S., Nahal, I., Melki, M., & Bensouilah, M. (2025). Potential effect of root-associated bacteria from Origanum vulgare L. on wheat and tomato seedlings. International Journal of Agricultural Technology, 21(6), 2203–2218. https://doi.org/10.63369/ijat.2025.21.6.2203-2218
Section
Original Study

References

Abbamondi, G. R., Tommonaro, G., Weyens, N., Thijs, S., Sillen, W., Gkorezis, P., Iodice, C., Rangel, W. M., Nicolaus, B. and Vangronsveld, J. (2016). Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chemical and Biological Technologies in Agriculture, 3:1-10. DOI: https://doi.org/10.1186/s40538-015-0051-3

Abdel-Hamid, M. S., Fouda, A., El-Ela, H. K. A., El-Ghamry, A. A. and Hassan, S. D. (2021). Plant growth-promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents. Biomolecular Concepts, 12:175-196. DOI: https://doi.org/10.1515/bmc-2021-0019

Ahmed, A. and Hasnain, S. (2014). Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria. Polish Journal of Microbiology, 63:261-266. DOI: https://doi.org/10.33073/pjm-2014-035

Akram, W., Aslam, H., Ahmad, S. R., Anjum, T., Yasin, N. A., Khan, W. U., Ahmad, A., Guo, J., Wu, T., Luo, W. and Li, G. (2019). Bacillus megaterium strain A12 ameliorates salinity stress in tomato plants through multiple mechanisms. Journal of Plant Interactions, 14:506-518. DOI: https://doi.org/10.1080/17429145.2019.1662497

Ansari, F. A., Ahmad, I. and Pichtel, J. (2019). Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Applied Soil Ecology, 143:45-54. DOI: https://doi.org/10.1016/j.apsoil.2019.05.023

Bafana, A. (2013). Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World Journal of Microbiology and Biotechnology, 29:63-74. DOI: https://doi.org/10.1007/s11274-012-1158-3

Benaissa, A., Djebbar, R. and Abderrhmani, A. (2018). Diversity of plant growth promoting Rhizobacteria of Rhus tripartitus in arid soil of Algeria (Ahaggar) and their physiological properties under abiotics stresses. Advances in Horticultural Sciences, 32:525-534.

Bensidhoum, L., Nabti, E., Tabli, N., Kupferschmied, P., Weiss, A., Rothballer, M., Schmid, M., Keel, C. and Hartmann, A. (2016). Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with growth promoting, insecticidal and antifungal activities. European Journal of Soil Biology, 75:38-46. DOI: https://doi.org/10.1016/j.ejsobi.2016.04.006

Castronovo, L. M., Calonico, C., Ascrizzi, R., Del Duca, S., Delfino, V., Chioccioli, S., Vassallo, A., Strozza, I., De Leo, M., Biffi, S., Bacci, G., Bogani, P., Maggini, V., Mengoni, A., Pistelli, L., Lo Nostro, A., Firenzuoli, F. and Fani R. (2020). The cultivable bacterial microbiota associated to the medicinal plant Origanum vulgare L.: From Antibiotic Resistance to Growth-Inhibitory Properties. Frontiers in Microbiology, 11:862. DOI: https://doi.org/10.3389/fmicb.2020.00862

Choudhary, M., Singh, A., Yadav, T., Damodaran, M., Meena, D. and Joshi, P. K. (2021). Plant growth promoting bacteria G. (PGPB) helps in enhancing the salt tolerance in wheat and tomato crops under saline conditions. Journal of Soil Salinity and Water Quality, 13:70-78.

Costa, O. Y. A., Pijl, A., Houbraken, J., van Lith, W. and Kuramae, E. E. (2023). Soil substrate source drives the microbes involved in the degradation of gelatin used as a biostimulant. Applied Soil Ecology, 189:104906. DOI: https://doi.org/10.1016/j.apsoil.2023.104906

Đorđevic, S., Stanojevic, D., Vidovic, M., Mandic, V. and Trajkovic, I. (2017). The use of bacterial indole-3-acetic acid (IAA) for reduce of chemical fertilizers doses. Hemijska Industrija, 71:195-200. DOI: https://doi.org/10.2298/HEMIND160317029D

Duhan, P., Bansal, P. and Rani, S. (2020). Isolation, identification and characterization of endophytic bacteria from medicinal plant Tinospora cordifolia. South African Journal of Botany, 134:43-49. DOI: https://doi.org/10.1016/j.sajb.2020.01.047

Etminani, F. and B. Harighi. (2018). Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. The Plant Pathology Journal, 34:208-217. DOI: https://doi.org/10.5423/PPJ.OA.07.2017.0158

Fouda, A. H., Hassan, S. E., Eid, A. M. and Ewais, E. E. (2015). Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals of Agricultural Sciences, 60:95-104. DOI: https://doi.org/10.1016/j.aoas.2015.04.001

Hassan, S. E. (2017). Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research, 8:687-695. DOI: https://doi.org/10.1016/j.jare.2017.09.001

Herlina, L., Pukan, K. K. and Mustikaningtyas, D. (2017). The endophytic bacteria producing IAA (Indole Acetic Acid) in Arachis hypogaea. Cell Biology and Development, 1:31-35. DOI: https://doi.org/10.13057/cellbioldev/v010106

Herrera-Quiterio, A., Toledo-Hernández, E., Aguirre-Noyola, J. L., Romero, Y., Ramos, J., Palemón-Alberto, F. and Toribio-Jiménez, J. (2020). Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico. Revista Argentina de Microbiología, 52:231-239. DOI: https://doi.org/10.1016/j.ram.2019.08.003

Ji, S. H., Gururani, M. A. and Chun, S. C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169:83-98. DOI: https://doi.org/10.1016/j.micres.2013.06.003

Joe, M. M., Devaraj, S., Bensonb, A. and Sa, T. (2016). Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus schum & thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. Journal of Applied Research on Medicinal and Aromatic Plants, 3:71-77. DOI: https://doi.org/10.1016/j.jarmap.2016.02.003

Kabir, M. H., Unban, K., Kodchasee, P., Govindarajan, R. K., Lumyong, S., Suwannarach, N., Wongputtisin, P., Shetty, K. and Khanongnuch, C. (2023). Endophytic bacteria isolated from tea leaves (Camellia sinensis var. assamica) enhanced plant-growth-promoting activity. Agriculture, 13:533. DOI: https://doi.org/10.3390/agriculture13030533

Khan, A. L., Waqas, M., Kang, S. M., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., Al-Khiziri, S., Ullah, I., Ali, L., Jung, H. Y. and Lee, I. J. (2014). Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology, 52:689-95. DOI: https://doi.org/10.1007/s12275-014-4002-7

Kumar, D., Kumar, L., Raina, S. N., Parshad, R. and Gupta, V. K. (2012). Screening, isolation and production of lipase/esterase producing Bacillus sp. Strain DVL2 and its potential evaluation in esterification and resolution reactions. Archives of Applied Science Research, 4:1763-1770.

Kurabachew, H. and Wydra, K. (2013). Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biological control, 67:75-83. DOI: https://doi.org/10.1016/j.biocontrol.2013.07.004

Krimi, Z., Alim, D., Djellout, H., Tafifet, L., Mohamed-Mahmoud, F. and Raio A. (2016). Bacterial endophytes of weeds are effective biocontrol agents of Agrobacterium spp., Pectobacterium spp., and promote growth of tomato plants. Phytopathologia Mediterranea, 55:184-196.

Kurek, E., Ozimek, E. A., Sobiczewski, P., Słomka, A. J. and Jaroszuk-Ściseł, J. E. (2013). Effect of Pseudomonas luteola on mobilization of phosphorus and growth of young apple trees (Ligol)-Pot experiment. Scientia Horticulturae, 164:270-276. DOI: https://doi.org/10.1016/j.scienta.2013.09.012

Malfanova, N., Kamilova, F., Validov, S., Shcherbakov, A., Chebotar, V., Tikhonovich, I. and Lugtenberg, B. (2011). Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microbial Biotechnology, 4:523-32. DOI: https://doi.org/10.1111/j.1751-7915.2011.00253.x

Mastro, G., Tarraf, W., Verdini, L., Brunetti, G. and Ruta, C. (2017). Essential oil diversity of Origanum vulgare L. populations from Southern Italy. Food Chemistry, 235:1-6. DOI: https://doi.org/10.1016/j.foodchem.2017.05.019

Mengxing, X. U., Fengfang, L. I., Yuan Gaoqing, L. I., Qiqin, W. and Xiaogang, U. (2021). Identification and characterization of Burkholderia cepacia JX−1 against the tomato bacterial wilt. Chinese Journal of Biological Control, 37:304-314.

Passari, A. K., Mishra, V. K., Gupta, V. K., Yadav, M. K., Saikia, R. and Singh, B. P. (2015). In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic Actinomycetes associates with medicinal Plants. PLoS ONE, 10:e0139468. DOI: https://doi.org/10.1371/journal.pone.0139468

Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar, K. and Nain, L. (2011). Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Annals of Microbiology, 61:893-900. DOI: https://doi.org/10.1007/s13213-011-0211-z

Roman-Ponce, B., Reza-Vazquez, D. M., Gutierrez-Paredes, S., De Haro-Cruz, M. J., Maldonado-Hernandez, J., Bahena-Osorio, Y., Estrada-De Los Santos, P., Wang, E. T. and Vasquez-Murrieta, M. S. (2017). Plant growth-promoting traits in rhizobacteria of heavy metal resistant plants and their effects on Brassica nigra seed germination. Pedosphere, 27:511-526. DOI: https://doi.org/10.1016/S1002-0160(17)60347-3

Samaras, A., Roumeliotis, E., Ntasiou, P. and Karaoglanidis, G. (2021). Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens. Plants, 10:1113. DOI: https://doi.org/10.3390/plants10061113

Sánchez-López, A. S., González-Chávez, M. A., Solís-Domínguez, F. A., Carrillo-González, R. and Rosas-Saito, G. H. (2018). Leaf epiphytic bacteria of plants colonizing mine residues: possible exploitation for remediation of air pollutants. Frontiers in Microbiology, 9:3028. DOI: https://doi.org/10.3389/fmicb.2018.03028

Silva, C. F., Vitorino, L. C., Mendonça, M. C., Araújo, W. L., Dourado, M. N., Albuquerque, L. C., Soares, M. A. and Souchie, E. L. (2020). Screening of plant growth-promoting endophytic bacteria from the roots of the medicinal plant Aloe vera. South African Journal of Botany, 134:3-16. DOI: https://doi.org/10.1016/j.sajb.2019.09.019

Sicuia, O. A., Grosu, I., Constantinescu, F., Voaideş, C. and Cornea, C. P. (2015). Enzymatic and genetic variability in Bacillus spp. strains with plant beneficial qualities. AgroLife Scientific Journal, 4:124-131.

Vitorino, L. V., Silva, F. G., Soares, M. A., Souchie, E. L., Costa, A. C. and Lima, W. C. (2012). Solubilization of calcium and iron phosphate and in vitro production of indoleacetic acid by endophytic isolates of Hyptis marrubioides epling (Lamiaceae). International Research Journal of Biotechnology, 3:47-54.

War Nongkhlaw, F. M. and Joshi, S. R. (2014). Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Revista de Biología Tropical, 62:1295-1308. DOI: https://doi.org/10.15517/rbt.v62i4.12138

Widnyana, I. K. and Javandira C. (2016). Activities Pseudomonas spp. and Bacillus sp. to stimulate germination and seedling growth of tomato plants. Agriculture and Agricultural Science Procedia, 9:419-423. DOI: https://doi.org/10.1016/j.aaspro.2016.02.158

Zhao, X., Wang, M., Wang, H., Tang, D., Huang, J. and Sun, Y. (2019). Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria. International Journal of Environmental Research and Public Health, 16:268. DOI: https://doi.org/10.3390/ijerph16020268