Evaluation of plant-based protein products: Tempeh derived from the local edible freshwater alga, Chara corallina Willdenow on immune function, toxicity and antioxidant activity

Main Article Content

Chankaew, W.
Sumana, B.
Srimoon, R.
Kongthong, S.
Ngamphongsai, C.
Boonprab, K.

Abstract

The findings demonstrated that a plant-based protein powder, tempeh derived from the freshwater alga Chara corallina (ATF-C), at 3.90–500 µg/mL showed no cytotoxicity, maintaining cell viability above 90%. It significantly promoted cell proliferation and upregulated mRNA expression of key antioxidant enzymes—superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT)—within 62.5–500 µg/mL (p<0.05). Moreover, ATF-C enhanced nitrite production and phagocytic activity in a dose-dependent manner. Gene expression profiling revealed marked induction of immune-related markers, including Lysozyme M, tumor necrosis factor-alpha (TNF-α), and interleukin-8 (IL-8), across the same concentration range (p<0.05). Collectively, these findings demonstrated that ATF-C is not only safe but also exhibits promising antioxidant and immunomodulatory properties. Its dual role as an immune enhancer and antioxidant is provided a strong foundation for future applications in human health, particularly in immunity regulation and oxidative stress management.

Article Details

How to Cite
Chankaew, W., Sumana, B., Srimoon, R., Kongthong, S., Ngamphongsai, C., & Boonprab, K. (2025). Evaluation of plant-based protein products: Tempeh derived from the local edible freshwater alga, Chara corallina Willdenow on immune function, toxicity and antioxidant activity. International Journal of Agricultural Technology, 21(6), 2229–2242. https://doi.org/10.63369/ijat.2025.21.6.2229-2242
Section
Original Study

References

Chankaew, W., Yangtong, M. and Seangkaew, J. (2020). Evaluation of antioxidant activity and phytochemical from Kam Kung (Chara corallina Klein ex C. L. Willnenow). Princess of Naradhiwas University Journal, 12:296-314.

Chankaew, W., Phetkul, U. and Srimoon, R., (2024). Phytochemicals, α-glucosidase and α-amylase inhibitory efficiency of brittle wort (Chara corallina) extract. Current Applied Science and Technology, 24:1-10. DOI: https://doi.org/10.55003/cast.2023.257626

Ceriello, A., Morocutti, A., Mercuri, F., Quagliaro, L., Moro, M. and Damante, G. et al. (2000). Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes, 49:2170-2177. DOI: https://doi.org/10.2337/diabetes.49.12.2170

Craigie, J. S. and Wen, Z. C. (1984). Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). Canadian Journal of Botany, 62:1665-1670. DOI: https://doi.org/10.1139/b84-224

Curtain, F. and Grafenauer, S. J. N. (2019). Plant-based meat substitutes in the flexitarian age: an adult of products on supermarket shelves. Nutrients, 11:2603. DOI: https://doi.org/10.3390/nu11112603

Goethe, R. and Phi-van, L. (1998). Posttranscriptional lipopolysaccharide regulation of the lysozyme gene at processing of the primary transcript in myelomonocytic HD11 cells. The Journal of Immunology, 160:4970-4978. DOI: https://doi.org/10.4049/jimmunol.160.10.4970

ISO 10993-5. (2009) Biological evaluation of medical devices Part 5: tests for in vitro cytotoxicity. ISO.2009.

Khongthong, S., Theapparat, Y., Roekngam, N., Tantisuwanno, C., Otto, M. and Piewngam, P. (2021). Characterization and immunomodulatory activity of sulfated galactan from the red seaweed Gracilaria fisheri. International journal of biological macromolecules, 189: 705-714. DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.182

Kim, J. K., Cho, M. L. S., Karnjapratum, I. S. and Shin, S. G. (2011). In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. International of Journal of Biological Macromoleccules, 49:1051-1058. DOI: https://doi.org/10.1016/j.ijbiomac.2011.08.032

Lins, K. O., Bezerra, D. P., Alves, A. P., Alencar, N. M., Lima, M. W. and Torres, L. M. (2009). Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). Journal of Applied Toxicology, 29:20-26. DOI: https://doi.org/10.1002/jat.1374

López-García, J., Lehock, M., Humpolíek, P. and Sáha, P. (2014). HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. Journal of Functional Biomaterial, 5:43-57. DOI: https://doi.org/10.3390/jfb5020043

Mahshid, G., Tyron, T., Sonia, S. and Kempson. I. (2021). The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. International Journal of Molecular Science, 22:1-30. DOI: https://doi.org/10.3390/ijms222312827

Marinho-Soriano, E. and Bourret, E. (2005). Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresource Technology, 96:379-382. DOI: https://doi.org/10.1016/j.biortech.2004.04.012

Markart, P., Faust, N., Graf, T., Na, C. L., Weaver, T. E. and Akinbi, H. T. (2004). Comparison of the microbicidal and muramidase activities of mouse lysozyme M and P. Biochemical Journal, 380:385-392. DOI: https://doi.org/10.1042/bj20031810

Monosroi, A., Saraphachotiwitthaya, J. and Monosroi, J. (2004). Immunomodulatory activity of fractions from hot aqueous extract of wood from Clausena excavate. Fitoterapia, 75:302-308. DOI: https://doi.org/10.1016/S0367-326X(04)00048-6

Naksit, P. (2020). Plant-based Proteins: Nutrition, Structure, Functionality and Applications in Food Industry. Rajabhat Agriculture Journal, 19:61-69.

Özbek, A. G. and Bilek, S. E. (2018). Plant Based Protein Sources and Extraction, Current Investigations in Agriculture and Current Research, 2:169-171. DOI: https://doi.org/10.32474/CIACR.2018.02.000130

Rapeephon, S. (2020). Alternative Proteins: Market Research on Consumer Trends and Emerging Landscape. Meat and Muscle Biology, 4:16-11. DOI: https://doi.org/10.22175/mmb.11225

Rubio, N. R., Xiang, N. and Kaplan, D. L. (2020). Plant-based and cell-based approaches to meat production. Nature Communications, 11:1-9. DOI: https://doi.org/10.1038/s41467-020-20061-y

Shindo, Y., Witt, E., Han, D., Epstein, W. and Packer, L. (1994). Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. Journal of Investigative Dermatology, 102:122-124. DOI: https://doi.org/10.1111/1523-1747.ep12371744

Thongkorn, P. (2020). Research guidelines for Plant-based Protein. Journal of Science and Technology, 38:36-39.

Velioglu, Y. S., Mazza, G., Gao, L. and Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. Journal of Agriculture and Food Chemistry, 46:4113-4117. DOI: https://doi.org/10.1021/jf9801973

Wongprasert, K., Rudtanatip, T. and Praiboon, J. (2014). Immunostimulatory activity of sulfated galactans isolated from the red seaweed Gracilaria fisheri and development of resistance against white spot syndrome virus (WSS) in shrimp. Fish Shell fish Immunology, 36:52-60. DOI: https://doi.org/10.1016/j.fsi.2013.10.010

Youla, A. A., Nelly, M., Reggie, S, Nurpudji, A. T., William, B. G., Mrinal, S., Felicia K., Aurielle, A. S., Alfredo, W. and Fahrul, N. (2023). Soy and Algae Combination Using Tempe Fermentation Method: A Proposed Opinion for the Development of Functional Food. Revista Nutricion Clínica Diet Hosp, 43:30-35. DOI: https://doi.org/10.12873/433assa