Evaluation of ear yield stability of organic sweet corn hybrids at different elevations in the humid tropical climate of Indonesia

Main Article Content

Chozin, M.
Sudjatmiko, S.
Fahrurrozi, F.

Abstract

Yield trials are an important step in a breeding program to evaluate the performance of selected genotypes under various environments. In this study, the ear yield stability and adaptability of ten experimental sweet corn hybrids bred for organic production was estimated using the AMMI model. The combined analysis of variance indicated that the location effect (E) was a primary source of variation in ear yield (35%), followed by hybrid (G) and hybrid-location interaction (GEI) effects, which accounted for 27% and 16%, respectively. Among the tested locations, highland was identified as the most productive environment. However, the significant GEI effect suggests a possible inconsistency in the ear yield among the hybrids across elevations. Both the estimates of AMMI stability value (ASV) and yield stability index (YSI) indicate that the experimental hybrid from the cross of Caps-5 x Caps-22, as followed by check of commercial hybrid Paragon, could serve as the most suitable hybrids for organically growing sweet corn under different elevation in the humid tropical climate of Indonesia.

Article Details

How to Cite
Chozin, M., Sudjatmiko, S., & Fahrurrozi, F. (2025). Evaluation of ear yield stability of organic sweet corn hybrids at different elevations in the humid tropical climate of Indonesia. International Journal of Agricultural Technology, 21(6), 2261–2274. https://doi.org/10.63369/ijat.2025.21.6.2261-2274
Section
Original Study

References

Ardelean, M., Cordea, M., Voichita, H. A. S. and Agnes, B. O. R. S. (2012). G x E interaction on yield stability of five sweet corn hybrids grown under different agricultural systems. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40:290-292. DOI: https://doi.org/10.15835/nbha4017222

Bakshi, M. P. S., Wadhwa, M. and Makkar, H. P. (2016). Waste to worth: vegetable wastes as animal feed. CABI Reviews, 11:1-26. DOI: https://doi.org/10.1079/PAVSNNR201611012

Bernardo Júnior, L. A. Y., de Silva, C. P., de Oliveira, L. A., Nuvunga, J. J., Pires, L. P. M., Von Pinho, R. G. and Balestre, M. (2018). AMMI Bayesian models to study stability and adaptability in maize. Agronomy Journal, 110:1765-1776. DOI: https://doi.org/10.2134/agronj2017.11.0668

Bose, L. K., Jambhulkar, N. N., Pande, K. and Singh, O. N. (2014). Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chilean Journal of Agricultural Research, 74:3-9. DOI: https://doi.org/10.4067/S0718-58392014000100001

Crossa, J. (1990). Statistical analyses of multilocation trials. Advances in Agronomy, 44:55-85. DOI: https://doi.org/10.1016/S0065-2113(08)60818-4

Dhaliwal, D. S. and Williams, M. M. (2022). Evidence of sweet corn yield losses from rising temperatures. Scientific Reports, 12:18218. DOI: https://doi.org/10.1038/s41598-022-23237-2

Dyah, P. S. and Kahfi, N. (2021). Feasibility study of hybrid corn and sweet corn farm in Plemahan District, Kediri Regency. In E3S Web of Conferences, 232:02032. DOI: https://doi.org/10.1051/e3sconf/202123202032

Fahrurrozi, F., Sudjatmiko, S., Muktamar, Z., Setyowati, N. and Chozin, M. (2022). Use of Tithonia diversifolia leaves for liquid organic fertilizer. International Journal of Agricultural Technology, 18:503-510.

Fasahat, P., Rajabi, A., Mahmoudi, S. B., Noghabi, M. A. and Rad, J. M. (2015). An overview on the use of stability parameters in plant breeding. Biometrics & Biostatistics International Journal, 2:149-159. DOI: https://doi.org/10.15406/bbij.2015.02.00043

Gauch, Jr, H. G. (1992). Statistical Analysis of Regional Yield Trials AMMI Analysis of Factorial Designs. Elsevier Science Publisher B.V., Amsterdam.

Gauch, Jr, H. G. (2013). A simple protocol for AMMI analysis of yield trials. Crop Science, 53:1860-1869. DOI: https://doi.org/10.2135/cropsci2013.04.0241

Guilherme, R., Reboredo, F., Guerra, M., Ressurreição, S. and Alvarenga, N. (2020). Elemental composition and some nutritional parameters of sweet pepper from organic and conventional agriculture. Plants, 9:863. DOI: https://doi.org/10.3390/plants9070863

Juo, A. S. and Franzluebbers, K. (2003). Tropical Soils: Properties and Management for Sustainable Agriculture. Oxford University Press, USA. DOI: https://doi.org/10.1093/oso/9780195115987.001.0001

Kang, M. S. (1993). Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal, 85:754-757. DOI: https://doi.org/10.2134/agronj1993.00021962008500030042x

Kara, B. and Uygur, V. (2020). Organic or conventional agriculture? A study on yield and nutritional status of sweet corn. Maydicam, 65:65-M2.

Kazimierczak, R., Średnicka-Tober, D., Hallmann, E., Kopczyńska, K. and Zarzyńska, K. (2019). The impact of organic vs. conventional agricultural practices on selected quality features of eight potato cultivars. Agronomy, 9:799. DOI: https://doi.org/10.3390/agronomy9120799

Mahanta, D., Bisht, J. K. and Kant, L. (2021). Concept and global scenario of organic farming. In Advances in organic farming. Woodhead Publishing, pp.1-16. DOI: https://doi.org/10.1016/B978-0-12-822358-1.00007-9

Morton, L. W., Nair, A. and Gleason, M. (2017). Climate, weather, and sweet corn. Sociology Technical Report 1048.

Patel, R., Parmar, D. J., Kumar, S., Patel, D. A., Memon, J., Patel, M. B. and Patel, J. K. (2023). Dissection of genotype× environment interaction for green cob yield using AMMI and GGE biplot with MTSI for selection of elite genotype of sweet corn (Zea mays conva. Saccharata var. rugosa). Indian Journal of Genetics and Plant Breeding, 83:59-68.

Pour-Aboughadareh, A., Khalili, M., Poczai, P. and Olivoto, T. (2022). Stability indices to deciphering the genotype-by-environment interaction (GEI) effect: An applicable review for use in plant breeding programs. Plants, 11:414. DOI: https://doi.org/10.3390/plants11030414

Purchase, J. L., Hatting, H. and Van Deventer, C. S. (2000). Genotype× environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17:101-107. DOI: https://doi.org/10.1080/02571862.2000.10634878

Rao, P., SandhyaKishore, N., Sandeep, S., Neelima, G., Rao, P. M., Das, D. M. and Saritha, A. (2022). Evaluation of performance and yield stability analysis based on AMMI and GGE-biplot in promising pigeonpea [Cajanus cajan (L.) Millspaugh] genotypes. Legume Research-An International Journal, 45:1414-1420.

Rodríguez-Ortiz, J. C., Díaz-Flores, P. E., Zavala-Sierra, D., Preciado-Rangel, P., Rodríguez-Fuentes, H., Estrada-González, A. J. and Carballo-Méndez, F. J. (2022). Organic vs. conventional fertilization: Soil nutrient availability, production, and quality of tomato fruit. Water, Air, and Soil Pollution, 233:87. DOI: https://doi.org/10.1007/s11270-022-05545-5

Ruswandi, D., Yuwariah, Y., Ariyanti, M., Syafii, M. and Nuraini, A. (2020). Stability and adaptability of yield among earliness sweet corn hybrids in West Java, Indonesia. International Journal of Agronomy, 2020:4341906. DOI: https://doi.org/10.1155/2020/4341906

Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A. and Abbasian, A. (2017). Evaluation of genotype× environment interaction in rice based on AMMI model in Iran. Rice Science, 24:173-180. DOI: https://doi.org/10.1016/j.rsci.2017.02.001

Woodruff, L. K., Habteselassie, M. Y., Norton, J. M., Boyhan, G. E. and Cabrera, M. L. (2019). Yield and nutrient dynamics in conventional and organic sweet corn production systems. Agronomy Journal, 111:2395-2403. DOI: https://doi.org/10.2134/agronj2018.09.0625

Zobel, R. W., Wright, M. J. and Gauch Jr, H. G. (1988). Statistical analysis of a yield trial. Agronomy journal, 80:388-393. DOI: https://doi.org/10.2134/agronj1988.00021962008000030002x

Zystro, J., Peters, T. E., Miller, K. M. and Tracy, W. F. (2021). Inbred and hybrid sweet corn genotype performance in diverse organic environments. Crop Science, 61:2280-2293. DOI: https://doi.org/10.1002/csc2.20457