Genetic diversity of Philippine sweet potato (Ipomoea batatas L. Lam) germplasm using morphological and molecular markers
Main Article Content
Abstract
The genetic and phenotypic diversity of sweet potato (Ipomoea batatas L. Lam) germplasm collected from Luzon, Philippines, was assessed through integrated morphological and molecular approaches. A total of 264 accessions, including released varieties, advanced lines, and hybrids, were characterized. Morphological evaluation revealed distinct variability in vegetative and storage root traits. Leaf morphology ranged from triangular to semi-elliptical with pigmentation varying from green to purple, while lobe number reflected high phenotypic plasticity. Storage roots exhibited diverse shapes, from elliptic to oblong, and variable pigmentation (orange to purple), indicative of carotenoid and anthocyanin accumulation. Environmental conditions, particularly excessive soil moisture, influenced trait expression by reducing pigmentation intensity and inducing structural deformities such as grooves and constrictions. Phenotypic diversity analysis using the Shannon Diversity Index revealed high variability in vine pubescence and skin pigmentation (H′ ≥ 0.67) but limited diversity in mature leaf color and flesh pigmentation (H′ ≤ 0.33). Cluster analysis (UPGMA) grouped the genotypes into 10 clusters, reflecting both genetic variation and environmental effects. Complementary molecular characterization using 54 SSR primers, of which 33 were polymorphic, confirmed substantial allelic diversity. The mean polymorphic information content (PIC) was 0.909, demonstrating strong discriminatory power. SSR-based clustering grouped 156 genotypes into 12 clusters at a Jaccard similarity coefficient of 0.89, providing higher resolution than morphological analysis and delineating regional populations and hybrid groups. The integration of phenotypic and molecular data highlights the extensive diversity within Philippine sweetpotato germplasm. While morphological traits were environmentally influenced, SSR markers effectively resolved genetic relationships and population structure. This combined framework provided a robust basis for germplasm management and utilization. The findings underscored the importance of conserving diverse alleles and exploiting them for breeding programs focused on pigmentation, root quality, stress resilience, and yield improvement, thereby supporting sustainable sweet potato production in the Philippines.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Amoanimaa-Dede, H., Su, C, Yeboah, A, Chen, C, Yang, S, Zhu, H and Chen, M. (2020). Flesh color diversity of sweetpotato: An overview of the composition, functions, biosynthesis, and gene regulation of the major pigments. Phyton-International Journal of Experimental Botany, 89:DOI:10.32604/phyton.2020.011979
Ayeleso, T. B., Ramachela, K. and Mukwevlo, E. (2016). A review of therapeutic potentials of sweetpotato: Pharmacological activities and influence of the cultivar. Tropical Journal of Pharmaceutical Research, 15:2751-2761.
Chandrasekara, A. and Kumar, T. I. (2016). Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. Hindawi Publishing Corporation. International Journal of Food Science, http://dx.doi.org/10.1155/2016/3631647
David, M. C., Diaz, F. C., Mwanga, R. O. M., Tumwegamire, S., Mansilla, R. C. and Grüneberg, W. J. (2018). Gene pool subdivision of east African sweetpotato parental material. Crop Science, 58:2302-2314.
Doyle, J. J. and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19:11-15.
Egesi, C., Odiaka, S. A. and Okoye, C. O. (2003). Morphological diversity of Ipomoea batatas (L.) Lam in Nigeria. African Journal of Biotechnology, 2:349-354.
Grune, T., Lietz, G., Palou, A., Ross, A. C., Stahl, W., Tang, G., Thurnham, D., Yin, S. A. and Biesalski, H. K. (2010). Beta-Carotene Antioxidant Role. Journal of Nutrition. Vol. 140, Issue 12, Dec. 2010, 2268S-2285S
Grüneberg, W. J., Ma, D., Mwanga, R. O. M., Carey, E. E., Huamani, K., Diaz, F., Eyzaguirre, R., Guaf, E., Jusuf, M., Karuniawan, A., Tjintokohadi, K., Song, Y. S., Anil, S. R., Hossain, M., Rahaman, E., Attaluri, S. I., Somé, K., Afuape, S. O., Adofo, K., Lukonge, E., Karanja, L., Ndirigwe, J., Ssemakula, G., Agili, S., Randrianaivoarivony, J. M., Chiona, M., Chipungu, F., Laurie, S. M., Ricardo, J., Andrade, M., Rausch Fernandes, F., Mello, A. S., Khan, M. A., Labonte, D. R. and Yencho, G. C. (2009). Advances in sweetpotato breeding from 1992 to 2012. In: Potato and Sweetpotato in Africa. Oxfordshire (UK). CABI International. ISBN 978-1-78064-420-2. pp.3-68.
Gutiérrez, D. L., Fuentes, S. and Salazar, L. F. (2003). Sweet potato Virus Disease (SPVD): distribution, incidence, and effect on sweet potato yield in Peru. Plant Disease. 87:297-302.
Hauser, S., Nyadanu, D. and Alamu, O. (2013). Characterization of sweet potato accessions from Africa using morphological and agronomic traits. International Journal of Agricultural Science, 3:72-81.
Huang, S. S., Deng, J. S., Chen, H. I., Lin, Y. H. and Huang, G. I. (2014). Antioxidant activities of two metallothionein-like proteins from sweet potato (Ipomoea batatas [L.] Lam. `Tainong 57') storage roots and their synthesized peptides- Botanical studies, 2014 Springer 55:64 10.1186/s40529-014-0064-4
Hernandez, C., Concepcion, M. P. and Medina, R. (2016). Genetic diversity and structure of sweet potato in Central America as revealed by SSR markers and morphological traits. Agronomy, 6:26.
Huaman, Z. (1999). Systematic botany and morphology of the Sweetpotato plant. Sweetpotato germplasm management (Ipomea batatas) - Training manual. Lima, International Potato Center (CIP). Section 1.1.
Islam, S. (2006). Sweetpotato (Ipomoea batatas L.) Leaf: Its Potential Effect on Human Health and Nutrition Journal of Food Science.31 May 2006 https://doi.org/10.1111/j.1365-2621.2006.tb08912.x
Karyeija, R., Kreuze, J. F., Gibson, R. W. and Valkonen, J. P. T. (2000). Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants Virology, 269:26-36.
Khoo, H. E., Azlan, A., Tang, S. T. and Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research, 61:1361779.
Kreuze, J. F. (2002). Molecular studies on the sweet potato virus diseases and its two causal agents. (Doctoral dissertation). Department of Plant Biology, Uppsala, Sweden.
Laurie, S. M., Faber, M., Van Jaarsveld, P. J., Laurie, R. N., Du Plooy, C. P. and Modisane, P. C. (2012). β-Carotene yield and productivity of orange-fleshed sweet potato (Ipomoea batatas L. Lam.) as influenced by irrigation and fertilizer application treatments. Scientia Horticulturae, 142:180-184.
Low, J. W., Arimond, M., Osman, N., Cunguara, B., Zano, F. andTschirley, D. (2007). Ensuring the supply of and creating demand for a biofortified crop with a visible trait: Lessons learned from the introduction of orange-fleshed sweetpotato in drought-prone areas of Mozambique. The Food and Nutrition Bulletin, 28:S258-S270.
Mahuku, G., Hamblin, M. T. and Brown, A. V. (2002). Evaluation of genetic diversity in Ipomoea batatas (sweet potato) using SSR markers. Theoretical and Applied Genetics, 105:97-105.
Meng, Y., Zhao, N., Li, H., Zhai, H., He, S. and Liu, Q. (2018). SSR fingerprinting of 203 sweetpotato (Ipomoea batatas (L.) Lam.) varieties. Journal of Integrative Agriculture 2018, 17:86-93 .
Naidoo, S., Laurie, S. M., Amelework, A. B., Shimelis, H. and Laing, M. (2022). Selection of sweetpotato parental genotypes using simple sequence repeat markers plants 2022, 11:1802. https://doi.org/10.3390/plants11141802
Ngailo, S., Shimelis, H., Sibiya, J. and Mtunda, K. (2016). Screening of Tanzanian sweet potato germplasm for yield and related traits and resistance to sweet potato virus disease. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 66:52-66.
Olayemi, M., Taiwo, K. A. and Akinmoladun, O. (2020). Assessment of genetic diversity in Ipomoea batatas using morphological traits and SSR markers in Sub-Saharan Africa. Genetic and Molecular Research, 19:Gmr18114.
Prasanth, G. and Hegde, V. (2008). Occurrence of Sweet potato feathery mottle virus and Sweetpotato leaf curl Georgia virus on Sweet Potato in India. Plant Disease, 92:311.
Rojas, R. A., Medina, C. and Delgado, F. (2015). Genetic diversity of Ipomoea batatas (L.) Lam revealed by SSR markers. Genetic Resources and Crop Evolution, 62:741-752.
Sim, J., Valverde, R. A. andClark, C. A. (2000). Whitefly Transmission of Sweetpotato chlorotic stunt virus. Plant Diseases, 84:1250.
Terahara, N., Konczak, I., Ono, H., Yoshimoto, M. and Yamakawa, O. (2004). Characterization of Acylated Anthocyanins in Callus Induced from Storage Root of Purple-Fleshed Sweet Potato, Ipomoea batatas L. Journal of biomedicine & biotechnology, 2004:279-286.
Tian, Q., Konczak, I. and Schwartz, S. J. (2005). Probing anthocyanin profiles in purple sweet potato cell line (Ipomoea batatas L. Cv. Ayamurasaki) by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. J Agric Food Chem. 10; 53:6503-9. doi: 10.1021/jf050671m. PMID: 16076141.
Vaeasey, E. A., Borges, A., Rosa, M. S., Queiroz-Silva, J. R., Bressan, E. A. and Peroni, N. (2008). Genetic diversity in Brazilian sweetpotato (Ipomoea batatas (L.) Lam., Solanales, Convolvulaceae) landraces assessed within microsatellite markers. Genetics and Molecular Biology, 31:725-733.
Xiao, S., Xu, P., Deng, Y., Dai, X., Zhao, L. and Heide, B. (2021). Comparative analysis of chloroplast genomes of cultivars and wild species of sweetpotato (Ipomoea batatas [L.] Lam) BMC genomics, 2021 - Springer
Yada, B., Tukamuhabwa, P., Alajo A. and Mwangar, O. M. (2010). Morphological characterization of Ugandan sweetpotato germplasm. Crop Sciemce, 50:2364-2371.
Yang, X. S., Su, W. J, Wang, L. J., Lei, J., Chen, S. S. and Liu, Q. C. (2015). Molecular diversity and genetic structure of 380 sweetpotato accessions as revealed by SSR markers Journal of Integrative Agriculture, 14:633-641.
Yang, J., Moeinzadeh, M. H., Kuhl, H., Helmuth, J., Xiao, P., Haas, S., Liu, G., Zheng, J., Sun, Z., Fan, W., Deng, G., Wang, H., Hu, F., Zhao, S., Fernie, A. R., Boerno, S., Timmermann, B., Zhang, P. and Vingron, M. (2017). Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants, 3:696-703.
Zhang, D., Cervates, J., Huaman, Z., Carey, E. and Ghislain, M. (2000). Assessing genetic diversity of sweetpotato (Ipomoea batatas (L.) Lam.) cultivars from Tropical America using AFLP. Genetic Resources Crop Evolution, 47:659-665.