Community-driven engineering: Designing and constructing a mixing machine for organic fertilizer pellets from cricket dung

Main Article Content

Lomchangkum, C.
Phupuakdecha, P.
Obma, J.
Phong-a-ran, N.
Junsiri, C.
Sopa, P.
Doungpueng, K.

Abstract

Results demonstrated effective pellet formation with moisture content averaging 28.66-32.57% wb. Optimal performance was observed at a mixing speed of 75 rpm and a pelletizing speed of 350 rpm, achieving a production rate of 160.85±0.53 kg/hr. Production losses were minimal, with an average residual pellet percentage of 0.87±1.47% and an efficiency of 96.44±1.63%. The machine appears suitable for efficient community-level organic fertilizer production. Future research should focus on examining productivity factors, the long-term impacts of the process on sustainability and quality, and potential design improvements for enhanced transportability, such as tractor attachments, to better support farmers across various agricultural contexts.

Article Details

How to Cite
Lomchangkum, C., Phupuakdecha, P., Obma, J., Phong-a-ran, N., Junsiri, C., Sopa, P., & Doungpueng, K. (2025). Community-driven engineering: Designing and constructing a mixing machine for organic fertilizer pellets from cricket dung. International Journal of Agricultural Technology, 21(6), 2355–2374. https://doi.org/10.63369/ijat.2025.21.6.2355-2374
Section
Original Study

References

Alemi, H., Kianmehr, M. H. and Borghaee, A.M. (2010). Effect of pellet processing of fertilizer on slow-release nitrogen in soil. Asian Journal of Plant Sciences, 9:74-80. DOI: https://doi.org/10.3923/ajps.2010.74.80

Amiri, H., Kianmehr, M. H. and Arabhosseini, A. (2017). Optimizing the single screw extruder die head to produce organic-based fertilizer pellet. Agricultural Engineering International: CIGR Journal, 19:61-65.

AOAC (1984). Official methods of analysis', in Association of Official Analytical Chemists. Arlington: AOAC, 16th edn.

Barłóg, P. (2023). Improving fertilizer use efficiency—Methods and strategies for the future. Plants, 12:3658. DOI: https://doi.org/10.3390/plants12203658

Bongbut, S. and Chaichuay, V. (2023). Lessons learned from poverty reduction of Ban Saen Tor Cricket Farm Community Enterprise Group in Khon Kaen Province. Journal of Information Science Research and Practice, 41:21-40.

Bordoloi, R., Das, B., Yam, G., Pandey, P. K. and Tripathi, O. P. (2019). Modeling of water holding capacity using readily available soil characteristics. Agricultural Research, 8:347-355. DOI: https://doi.org/10.1007/s40003-018-0376-9

Butnan, S. and Duangpukdee, J. (2021). Cricket frass: The high-quality organic fertilizer for vegetable growth improvement. Khon Kaen Agriculture Journal, Suppl. 1, 883–887

Chikwado, U. K. (2013). Development and performance test of poultry feed mixing and pelleting machine. International Journal of Scientific Research, 4:1161-1166.

Daniyan, I. A., Omokhuale, A. M., Aderoba, A. A., Ikumapayi, O. M. and Adaramola, B. A. (2017). Development and performance evaluation of organic fertilizer machinery. Cogent Engineering, 4. DOI: https://doi.org/10.1080/23311916.2017.1364044

Dikinya, O. and Mufwanzala, N. (2010). Chicken manure-enhanced soil fertility and productivity: Effects of application rates. Journal of Soil Science and Environmental Management, 1:46-54.

Doungpueng, K., Charee, S., Oupathum, C., Premprayoon, K. and Pachanawan, A. (2024). Optimizing Shearing Characteristics of Sugarcane Leaves for Efficient Biomass Utilization and Machinery Design in the Sugar Industry. Engineering Journal, 28:1-11. DOI: https://doi.org/10.4186/ej.2024.28.1.1

Gageanu, I., Cujbescu, D., Persu, C., Tudor, P., Cardei, P. and Matache, M. (2021). Influence of input and control parameters on the process of pelleting powdered biomass. Energies, 14:4104. DOI: https://doi.org/10.3390/en14144104

Halloran, A., Hanboonsong, Y., Roos, N. and Bruun, S. (2017). Life cycle assessment of cricket farming in north-eastern Thailand. Journal of Cleaner Production, 156:83-94. DOI: https://doi.org/10.1016/j.jclepro.2017.04.017

Herencia, J. F. and Maqueda, C. (2016). Effects of time and dose of organic fertilizers on soil fertility, nutrient content, and yield of vegetables. Journal of Agricultural Science, 154: 1343-1361. DOI: https://doi.org/10.1017/S0021859615001136

Kader, M. A., Singha, A., Begum, M. A., Jewel, A., Khan, F. H. and Khan, N. I. (2019). Mulching as water-saving technique in dryland agriculture. Bulletin of the National Research Centre, 43:147. DOI: https://doi.org/10.1186/s42269-019-0186-7

Kliopova, I., Baranauskaitė-Fedorova, I., Malinauskienė, M. and Staniškis, J. K. (2016). Possibilities of increasing resource efficiency in nitrogen fertilizer production. Clean Technologies and Environmental Policy, 18:901-914. DOI: https://doi.org/10.1007/s10098-015-1068-9

Krongdang, S., Phokasem, P., Venkatachalam, K. and Charoenphun, N. (2023). Edible insects in Thailand: An overview of status, properties, processing, and utilization in the food industry. Foods, 12:2162. DOI: https://doi.org/10.3390/foods12112162

Krutz, G., Thomson, L. and Claar, P. (1994). Design of agricultural machinery. New York: John Wiley and Sons.

Kurniawati, A., Toth, G., Ylivainio, K. and Toth, Z. (2023). Opportunities and challenges of bio-based fertilizers utilization for improving soil health. Organic Agriculture, 13:335-350. DOI: https://doi.org/10.1007/s13165-023-00432-7

Lawong, W., Hwangdee, P., Thumma, S. and Lawong, C. (2011). Development of two pellet die organic fertilizer compression machine. Procedia Engineering, 8:226-229. DOI: https://doi.org/10.1016/j.proeng.2011.03.049

Li, W., Wang, M., Meng, F., Zhang, Y. and Zhang, B. (2022a). A review on the effects of pretreatment and process parameters on properties of pellets. Energies, 15:7303. DOI: https://doi.org/10.3390/en15197303

Li, Y., Zhao, B., Zhang, W., Wei, L. and Zhou, L. (2022b). Evaluation of agricultural machinery operational benefits based on semi-supervised learning. Agriculture, 12:2075. DOI: https://doi.org/10.3390/agriculture12122075

Lomchangkum, C., Junsiri, C., Sudajan, S. and Laloon, K. (2022a). A study on the mechanical characteristics of cassava tuber cutter. Agricultural Journal, 16:169-178.

Lomchangkum, C., Junsiri, C., Jomlaperatikul, P., Jomlaperatikul, A., Manklang, D. and Sopa, P. (2022b). A study on the mechanical properties of maize plant for design cutting machine of maize plant'. Farm Engineering and Automation Technology Journal, 8:169-178.

Muangtim, P., Leamwattanasutha, W., Incharoen, T., Yaemkong, S., Jaipong, P. and Boonsuk, A. (2023). Optimum ratio for organic liquid fertilizer production from cricket manure on yields of green oak lettuce. Khon Kaen Agriculture Journal, 468-474.

Nielsen, L. F. (2007). Moisture sorption in porous materials: A best fit description from experimental data. Nordic Concrete Research, 36:1-2.

Orisaleye, J. I., Ojolo, S. J. and Fashina, A. B. (2009). Design and development of a livestock feed pelleting machine. Journal of Engineering Research, 14.

Panday, D., Bhusal, N. and Das, S. (2024). Rooted in nature: The rise, challenges, and potential of organic farming and fertilizers in agroecosystems. Sustainability, 16:1530. DOI: https://doi.org/10.3390/su16041530

Przywara, M., Dürr, R., Otto, E., Kienle, A. and Antos, D. (2021). Process behavior and product quality in fertilizer manufacturing using continuous hopper transfer pan granulation—Experimental investigations. Processes, 9:1439. DOI: https://doi.org/10.3390/pr9081439

Reverberi, M. (2020). Edible insects: Cricket farming and processing as an emerging market. Journal of Insects as Food and Feed, 6:211-220. DOI: https://doi.org/10.3920/JIFF2019.0052

Shigley, J. E. and Mischke, C. R. (1989). Mechanical engineering design. 5th edn. New York: McGraw-Hill.

Sindhu, V., Chatterjee, R., Santhoshkumar, G. M. and Sinha, T. (2020). Enrichment of organic manures and their utilization in vegetable crops. Current Journal of Applied Science and Technology, 39:10-24. DOI: https://doi.org/10.9734/cjast/2020/v39i3230998

Srison, W., Doungpueng, K., Muenkaew, P. and Chuan-Udom, S. (2023). Behavior and model of grain separation for a small axial flow maize shelling unit', Engineering and Applied Science Research. Available at: https://ph01.tci-thaijo.org/index.php/easr/article/view/251075 (Accessed: 14 August 2024).

Sritram, P., Imsumran, V., Bunthai, P. and Sisonmak, S. (2016). Mixing machine and organic fertilizer pellets in the same. Farm Engineering and Automation Technology Journal, 2:87-96.

Sun, W., Wang, Y., He, H. and Sun, Y. (2023). Compression prediction from single pellet press to industrial production presses. Powder Technology, 427. doi: 10.1016/j.powtec.2023.118719. DOI: https://doi.org/10.1016/j.powtec.2023.118719

Tanangteerapong, D. (2017). Physical and chemical characterization of hydrolyzed Napier grass waste for biomass pellets, Engineering and Applied Science Research. Available at: https://ph01.tci-thaijo.org/index.php/easr/article/view/72808.

Ungureanu, N., Vladut, V., Voicu, G., Dinca, M. N. and Zabava, B. S. (2018). Influence of biomass moisture content on pellet properties–review. Engineering for Rural Development, 17:1876-1883. DOI: https://doi.org/10.22616/ERDev2018.17.N449

Verma, B. C., Pramanik, P. and Bhaduri, D. (2019). Organic fertilizers for sustainable soil and environmental management. Nutrient Dynamics for Sustainable Crop Production, 289-313. DOI: https://doi.org/10.1007/978-981-13-8660-2_10

Wang, X., Yan, J., Zhang, X., Zhang, S. and Chen, Y. (2020). Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau. PLoS ONE, 5:e0238042. DOI: https://doi.org/10.1371/journal.pone.0238042